
Graph Database in Large Scale Healthcare System
A Proposal for Efficient Data Management and Utilization

Yubin Park
University of Texas at Austin

TX, USA
Email: yubin.park@utexas.edu

Mallikarjun Shankar
Oak Ridge National Laboratory

TN, USA
Email: shankarm@ornl.gov

Joydeep Ghosh
University of Texas at Austin

TX, USA
Email: ghosh@ece.utexas.edu

Abstract—Healthcare data management and utilization have
been traditionally viewed as two orthogonal tasks. This struc-
tural gap between management and utilization has resulted in
unnecessarily complex database systems, as well as poor data
utilization. In this paper, we uncover rich graph structures from
the current US healthcare systems, which potentially lead to fill
this operational gap. A healthcare graph can be automatically
constructed from a normalized relational database, using our
“3NF Equivalent Graph” (3EG) transformation. We collect
real world graph queries such as finding self-referrals, shared
providers, and collaborative filtering. These queries are evaluated
over a relational database and its 3EG-transformed graph. Our
experimental results show that the resultant graph actually can
serve as multiple de-normalized tables, thus reducing complexity
in a database and enhancing data accessibility of users. Based
on this finding, we propose a cost efficient ensemble framework
with the current RDBMS healthcare architecture.

I. INTRODUCTION

Data-driven approaches can substantially reduce the current
healthcare expenditure in the United States [1]. The total
healthcare spending of the United States recorded the highest
in the world in 2011 [2], and the Health and Human Services
Department expects the spending will continue to increase [3].
Both private and public healthcare sectors are experiencing
drastic changes in their policies and data management systems
[4]. Solutions to provide “Best Care at Lower Cost” [5], [6]
need to be addressed from multiple angles. For example,
legislative health reforms are expected to slow down the
current increasing speed of healthcare spending [7]. Effective
data utilization, on the other hand, has been widely suggested
as an alternative solution to prevent the cost leakage and
waste in the healthcare systems [8]. Data-driven solutions
would provide better personalized, objective, and cost-effective
healthcare, as well as early-detection of fraud and abuse.
However, complex and dynamic characteristics of healthcare
data preclude such promising data utilization.

Data management and utilization have been traditionally
viewed as two independent tasks. Data schemas for healthcare
systems are very volatile by their nature, and usually involve
a multitude number of atomic entities and their relationships.
To minimize redundancy and dependency, healthcare data are
typically stored and managed using their “normalized” forms
[9], [10]. Those normalized tables are later either restructured
or “de-normalized” to be actually meaningful in data analytics
[11], [12]. Due to this structural gap between management

and utilization, poorly designed databases are prone to pro-
duce extraneous dummy schemas. For example, a normalized
healthcare database normally consists of hundreds of atomic
tables. If we include service-oriented de-normalized tables,
then the number of tables in a system grows uncountably
many. Furthermore, understanding such complex schema often
serves as a bottleneck to many other analytic procedures. Effi-
cient de-normalization techniques are still open to discussion,
and those dummy tables are mostly disposable.

In this paper, we unearth rich graph structures from the
current US healthcare systems. We adopt a “graph database”
to extensively utilize such graph representation. Unlike tra-
ditional relational databases, a graph database directly stores
and represents nodes, edges, and properties [13]. A graph
database can handle a wide range of queries, especially graph
queries, which would require deep join operations in normal-
ized relational tables [14]. Several examples of such deep
join queries are presented in Section V. These queries involve
relationships between healthcare entities. Even these simple
queries can be utilized in collaborative filtering as well as
other personalization services. We evaluate the performance of
such queries over a relational database and its equivalent graph
representation. Our experimental results suggest that a graph
database clearly exhibits its excellence on its performance
scaling and intuitive query representation. We observe that a
single graph database representation can serve many different
types of queries that would require many analytic dummy
tables. A graph database as a form of “de-normalized table”
can discard generating such redundant dummy tables. This
would potentially minimize the gap between management and
utilization in healthcare systems.

Our ultimate goal is to propose a cost efficient data man-
agement framework for healthcare systems. A graph database
is a crucial “component” of such framework, rather than a
whole replacement to the existing architecture. As can be seen
later in our experiments, traditional relational databases still
have many advantages over graph databases. Even further,
each graph database has its own specialty and application
needs [15]. For example, “Neo4J” [16] is suited for online
transaction processing (OLTP), while “Pregel” [17] is designed
for high latency, high throughput platforms. Efficient “ensem-
ble” of these components will lead to a better system design,
capturing a wide range of services efficiently. To summarize

our contributions in this paper:
• We propose a novel graph database design rationale,

“3NF Equivalent Graph” (3EG) transform. This technique
can automatically construct a graph database from an
existing normalized relational database.

• We generate realistic and large scale synthetic healthcare
data to simulate the current US healthcare systems.

• We collect eight useful graph queries, and evaluate the
performance of these queries over two representative
databases: MySQL for a relational database and Neo4J
for a graph database.

• We propose a blueprint for a cost efficient database
architecture in healthcare systems. This proposal requires
minimal changes to an existing architecture.

In Section II, we briefly discuss US healthcare systems
in general. We then introduce several forms of database
normalization, and various graph databases. In Section III, we
propose a novel graphs database design rationale, 3NF Equiv-
alent Graph (3EG) transformation. This technique converts
an existing normalized relational database to its equivalent
graph representation. In Section IV, we illustrate how we
generate “realistic” synthetic healthcare data. These data are
firstly stored in a relational database format, then converted to
a graph format using the 3EG transformation. In Section V,
we collect several real world use cases in healthcare databases,
and describe their actual meanings in actual systems. Empirical
evaluation results using MySQL and Neo4J are provided in
Section VI. Discussion and Conclusion appear in Section VII.

II. BACKGROUND

In this section, we describe US healthcare systems in
general. We also visit basic concepts in database normalization
and graph databases.

A. US Healthcare System

We describe US healthcare systems by an illustrative exam-
ple. Let’s consider a situation that a patient (or a beneficiary)
visits a hospital for his illness. A doctor (or a provider)
diagnoses the patient, and performs a certain procedure. Using
the patient’s insurance information, a claim is later filed to
a corresponding organization. For example, if the patient is
a Medicare enrollee, the claim is submitted to Centers for
Medicare and Medicaid Services (CMS). If the patient is with
a private sector health insurance, the claim will be delivered to
the corresponding institution. This filed claim usually contains
a list of providers involved, referral information (occasion-
ally), information of the patient, diagnosis and procedures
performed, and cost.

Figure 1 shows the relational representation of this health-
care system. Bene and Prov tables contain the information
of patients and providers, respectively. Claim table contains
diagnosis (ICD-9) and procedure information. The relation-
ships between beneficiaries and claims are captured in C2B
table, and those between providers and claims are in C2P table.
Referral information is recorded on C2R table, and the referral
ID is a foreign key to Provider ID.

Figure 1: Third Normal Form of US Healthcare System.

B. Database Normalization

Figure 1 actually follows Third Normal Form, and this level
of normalization is typically performed in practice. Database
normalization, firstly proposed by E. F. Codd, is a fundamental
relational database design rationale to minimize redundancy
and dependency [18], [19]. By reducing redundancy and
dependency of a system, transactional operations, such as
additions, deletions, and updates, can be made in one table.
Normalized tables, in theory, are better protected from trans-
actional anomalies and inconsistencies from dynamic schema
changes.

Each Normal Form imposes a set of rules. A specific normal
form is achieved when its requirements are fulfilled. First
Normal Form (1NF) pressumes the existence of the “key”,
and requires domains of a table to be “atomic”. In other
words, every attribute in a table should not be divided further.
For example, a name attribute containing both first and last
names is not atomic, since it actually holds two fields. To
understand Second Normal Form (2NF), we should introduce
the concept of “functional dependency”. A field X is said
to have a functional dependency on a field Y if and only if
values of X are precisely mapped to values of Y . 2NF is
accomplished when i) 1NF is achieved and ii) no non-key
element is functionally dependent on a proper subset of key
elements. Third Normal Form (3NF), the most popular normal
form, adds a further specification to 2NF requirements. In 3NF,
no transitive dependency is allowed between every non-key
elements. Specifically, if a table has ZIP code and County
code as non-key elements, County code should be removed
from the table since County code is transitively dependent on
ZIP code.

As an illustrative example, Figure 2 shows non-3NF repre-
sentation of the presented healthcare system. The design in the
figure actually violates the requirement for 2NF. As discussed,
each claim can have multiple providers in healthcare systems.
This design may allow repetitive rows for the same claim.
ICD-9 code and Procedure code for each claim are functionally
dependent on the combination of ClaimID and BeneID (a set

Figure 2: Non-3NF Representation of the Healthcare System.

of key elements), violating the 2NF requirement. Since this
design fails to meet the 2NF specifications, this cannot be 3NF
automatically. In this paper, we do not consider other higher
forms of normalization such as 4NF [20] and 5NF [21], and
mainly focus on 3NF. In most practical situations, higher nor-
mal forms than 3NF is not preferred due to their unnecessarily
specific constraints.

C. Graph Database

A graph database can be characterized by its distinct “data
model” from traditional relational databases [13]. A data
model, a set of conceptual tools to represent and manage
data, consists of three components [22]: i) data structure
types, ii) query operators, and iii) integrity rules. Data in
a graph database are stored and represented as graphs, or
data structures generalizing the notion of graph. Each graph
database has its own specialized graph query language, since
Structured Query Language (SQL) is inadequate for this type
of data. For example, Neo4J uses Cypher language, and
many RDF (Resource Description Framework) databases use
SPARQL (SPARQL Protocol and RDF Query Language).
Finally, integrity rules in a graph database are based on
its graph constraints, rather than from an imposed relational
schema.

With increasing complexity of real-world data and growing
needs for graph queries, numerous graph databases have been
proposed and developed in recent years. There exists a clear
trade-off between data size and data complexity in graph
databases. Moreover, each graph database is designed for
special application needs. For example, Neo4J is suited for
online transaction processing (OLTP), while Pregel is designed
for high latency, high throughput platforms. In this paper,
we primarily use Neo4J to explore the graph structure in
healthcare systems. Neo4J is a widely used open-source graph
database, implemented in Java. Neo4J is characterized as an
“embedded, disk-based, and fully transactional graph database
engine”. We decided to use Neo4J because of its popularity
and well-documented APIs. We mainly focus on general graph
processing capabilities of Neo4J, rather than its specialized
functions compared to other graph engines. Experimental eval-
uations of other graph engines are also practically important,
and we leave this as future work.

III. 3EG: 3NF EQUIVALENT GRAPH TRANSFORM

Compared to well established RDBMS design principles,
a design rationale for a graph database is not well grounded
and often ad hoc. In this paper, we do not plan to design a
graph database from scratch, and focus rather on the fact that
most database systems are already in 3NF. We presume the
existence of a 3NF relational database, and propose simple
conversion rules from 3NF to a graph database.

Converting a relational model to another data model has
been an important research topic in both software engineering
and database system communities. In software engineering,
a semantic structure of a relational database is used to re-
design its schema and reduce its maintenance cost. Entity-
Relationship (ER) model [23] has been a popular choice to rep-
resent such semantic structure. Several automatic algorithms
to convert a relational model to an ER model, also known as
“database reverse engineering”1, have been introduced in [24],
[25], [26]. Migrating a relational database to a completely
different class of database became a natural extension of
this database reverse engineering. Various database migration
approaches can be found in [27], [28], [29]. These approaches
include migrations between 1) ER model and relational model,
2) Object-Oriented (OO) model and Relational model, and 3)
OO model and ER model. However, converting a relational
database to a graph database has not been explored so far.
Researchers mostly need to manually examine the semantic
structure of the original relational database, and carefully port
the data to a graph database [30].

Transforming a relational model to a graph model is similar
to converting a relational model to an ER model. To construct
rules as simple as possible, we focus on the representation
in a graph database rather than the underlying semantic
structure (ER model). Moreover, we mainly focus on 2-way
relationships between nodes (entities), and all the relationships
are bi-directional in further discussions. The existence of keys
in 1NF intuitively maps to the existence of nodes in a graph
database. Relationships in a graph database can be analogous
to those in a relational database. Properties of nodes can be
specified by the requirements in 3NF. The requirements of 3NF
table are often concisely described as “Every non-key attribute
must provide a fact about the key, the whole key, and nothing
but the key” [31]. In other words, non-key elements describes
about the key (the node in a graph), and this description is
only to the key and nothing but the key (a unique connection
to the node).

We formalize our idea of transforming relational tables to
a graph database. Consider a table T = {(x, y)}, and a graph
G = {(n, r)|n ∈ N , r ∈ R} where N and R are sets of nodes
and relationships, respectively. Suppose x is a primary key in
T . 3NF Equivalent Graph (3EG) transformation is a process
of applying the following four rules:

1) Each tuple t ∈ T becomes a node n ∈ N . Each node n
is identified by its table name and primary key: id(n) =

1Conversion from an ER model to a relational schema is called as “database
forward engineering”.

Figure 3: 3NF Equivalant Graph Design.

{name(T), x}.
2) If y is a foreign key, a relationship r ∈ R is created

between n and m. In this case, id(m) = {name(Ty), y}
and Ty is a table where y is its primary key.

3) If y is a non-key element, y becomes a property of a
node n where id(n) = {name(T), x}.

4) For a set of keys in t, each pairwise relationship maps
to an edge between the corresponding vertices.

Each rule has its origin as follows:
1) Rule 1 specifies 1NF.
2) Rule 3 is based on the 3NF requirement: about the key,

the whole key, and nothing but the key.
3) Rule 2 and 4 follow from the definition of “relational

databases”.
Figure 3 shows a 3EG-transformed graph schema for the

design in Figure 1. Each primary key in a table is converted
to a node. For example, a BeneID in Bene table now maps to a
Bene node. A foreign key in a table is connected to a primary
key: a ProvID is connected to a ClaimID based on C2P table.
Non-key elements in ZIP, Spec, ICD9, and Proc tables are
properties of ZIP, Spec, ICD9, and Proc nodes, respectively.

3EG-transform provides a simple set of rules. This set of
rules can be instantaneously applied to any 3NF tables. By
applying these rules, we obtain a mirrored graph database of
the existing relational database. This transformation is lossless,
and reverse transformation is also possible. We note that the
generated graph may not be the optimal design for a specific
service purpose. The generated graph only guarantees that the
representation of the data is equivalent with the original 3NF
database.

IV. SYNTHETIC DATA GENERATION

In this paper, we generate realistic synthetic healthcare data,
and evaluate the performance of two databases using them.
Our synthetic data are firstly generated to be persistent to the
design in Figure 1, then 3EG-transformed to be loaded on a
graph database.

Table I: Synthetic datasets.
Dataset #. Bene #. Prov #. Claims #. Nodes #. Rel.

1 8K 800 400K 425K 2M
2 16K 1.6K 800K 824K 4M
3 31K 3.1K 1.5M 1.62M 8M
4 63K 6.3K 3.1M 3.21M 16M
5 125K 12.5K 6M 7M 33M
6 250K 25K 12M 13M 65M
7 500K 50K 25M 26M 129M
8 1M 100K 50M 51M 257M

We first generate ZIP, Spec, ICD9, and Proc tables. These
tables are based on the actual codes used in practice. For
example, we use the whole list of real ICD-9 codes, and create
our ICD9 table. Next, we synthesize Bene and Prov tables. The
number of beneficiaries and providers are given as parameters
to our synthesizer, and the corresponding number of BeneID’s
and ProvID’s are generated. ZIP codes and Specialty codes
(only for providers) are randomly assigned to BeneID’s and
ProvID’s. We assume that each beneficiary has 50 number
of claims on average. Based on the number of beneficiaries,
we generate 50 times larger number of claims, and assign
ClaimID’s. Each ClaimID is associated with random ICD-
9, Procedure codes, and one beneficiary (C2B table). A
beneficiary is randomly chosen from the already synthesized
beneficiary pool. Choosing a beneficiary from millions of
beneficiaries, however, needs a bit of attention. To avoid the
computational complexity, we adopt a tree structured multi-
nomial sampling. We first sample a group of beneficiaries,
then select a beneficiary from the group (two level samplings).
Every ClaimID has at least one provider, and it can have five
providers at maximum, and these associations are recorded
in C2P table. With 10% chance, a claim has a referral from
another provider, and this information is captured in C2R table.
Finally, these relational tables are 3EG-transformed, and we
obtain the equivalent graph representation in Figure 3.

Table I describes eight synthetic datasets used in our ex-
periments. The number of nodes and relationships correspond
to the number of beneficiaries and providers when the re-
lational tables are 3EG-transformed. For example, dataset 8
is generated by specifying one million beneficiaries and 100
thousand providers. After generating the synthetic relational
tables, those tables are 3EG-transformed resulting in total 51
million nodes and 257 million relationships. Figure 4 shows
the actual Neo4J console when 51 million nodes and 257
million relationships are loaded.

V. TEST CASES

In this section, we collect and explain eight graph query use
cases.

A. Queries in Healthcare Systems

In healthcare systems, mining and identifying relation-
ships between different entities are critical in many analytic
procedures. These relationships involve beneficiaries, claims,
providers, and sometimes locations, diseases, and procedures.
Figure 5 illustrates such relationships between beneficiaries,

Figure 4: A screen shot of Neo4J console when 51 million
nodes are loaded.

Benficiary

Claim

Provider

C1

B1 C2 P1

B2 C3 P3

B3 C4 P2

C5

Figure 5: A Snap Shot of Graph Representation. Other types
of nodes are not shown to unclutter the diagram.

claims, and providers. Careful investigation on these rela-
tionships often leads to early detection on organized frauds.
Furthermore, sophisticated personalization and data mining
algorithms also can be implemented on these use cases.

Queries to a healthcare database can be very diverse, rang-
ing from web search queries to forensic queries investigating
frauds and abuse. In this paper, we mainly focus on two
groups of queries regarding: fraud and abuse investigations and
personalized web services. Healthcare fraud cases typically
involve three parties: providers, beneficiaries, and insurance
providers. In [32], Li et al. shows that 69% of the litera-
ture involves mainly providers, and the rest 31% accounts
for beneficiaries. However, the healthcare parties are very
deeply entangled in many cases [33], and many legislative
changes, such as the Patient Protection and Affordable Care
Act (2010), are further increasing the complexity between
the parties. Furthermore, in recent years, several organized

Medicare frauds have been reported, involving more than 50
people. Personalized web services, on the other hand, have
been one of the key challenges in healthcare informatics as
described in [34]. Recent studies, however, indicate that the
current medical vocabularies can be barrier for normal users
to utilize the services [35]. Hierarchical queries on the specific
medical terminologies are also found to be the most frequent
queries in a clinical database [36].

Our eight queries are designed based on these recent
findings. We extensively explore three themes in healthcare
queries, namely 1) the relationships between beneficiaries
and providers, 2) loosely specified semantic constraints, and
3) a personalized recommendation system. Note that these
eight queries are formulated to justify the usefulness of graph
queries in healthcare systems. Other types of queries, such
as non-graph queries or more complex graph queries, can be
candidates for our performance evaluation, but we only focus
on these eight queries to meet our objectives.

B. Case 1: Shared Provider

Our first query example is to find out shared providers
between two beneficiaries. Figure 6 illustrates the idea. Given
two beneficiaries Ba and Bb, the query should return a list of
providers {Px} shared by two beneficiaries.

Using the schema in Figure 1, the corresponding MySQL
query is as follows:
SELECT tableA.provID FROM (

SELECT provID FROM C2P INNER JOIN (
SELECT claimID FROM C2B WHERE beneID=25869

) AS tmp ON tmp.claimID=C2P.claimID
) AS tableA INNER JOIN (

SELECT provID FROM clpr INNER JOIN (
SELECT claimID FROM C2B WHERE beneID=751751

) AS tmp ON tmp.claimID=C2P.claimID
) AS tableB ON tableA.provID=tableB.provID;

On the other hand, the same Neo4J Cypher query is below:
START beneA=node(25869), beneB=node(751751)
MATCH beneA-->()<--prov-->()<--beneB
RETURN prov;

We observe that two queries are quite different in their query
lengths. The query constraints appear in “where” and “join”
clauses in the MySQL query, and “match” clause in the Neo4J
Cypher query. The match clause directly represents the dia-
gram in Figure 6, while join clauses need more consideration
to understand properly. The benefit of graph database comes
from not only its direct data representation and storage, but
also its intuitive queries. Graph queries are more compactly
and easily represented in graph databases than in relational
databases.

C. Case 2: Loosely Specified Relationship

Our second query relaxes the condition in the first query.
In this case, the links between claims and providers are not
limited to the C2P table. We ask shared providers between two
beneficiaries either by actual visits or by referrals. Figure 7
describes this use case. To ask this query in MySQL, we
separately ask three different combinations of relationships:
C2P+C2P, C2P+C2R, and C2R+C2R. Each result should be

Benficiary Claim Provider

Ba Ca

Bb Cb Px

Figure 6: Case 1: A list of shared providers by Bene A and
Bene B.

Benficiary Claim Provider

Ba Ca

Bb Cb Px
*
*

Figure 7: Case 2, 3, and 4: A list of shared providers by Bene
A and Bene B.

stored and later union operation should be taken to prepare
the final results. In Neo4J, on the other hand, we only need
to modify the first query to include the referral relationship
between claims and providers.

D. Case 3: Shared Disease

This query is a slight modification of the first query. We
want to find a list of shared diseases between two beneficiaries
by looking up their claim records. The provider node in
Figure 7 becomes an ICD9 node in this example.

E. Case 4: Any Link between Two Entities

In this example, we find any type of links between two
beneficiaries. This link can be a shared provider, shared disease
code, or shared procedure code. The provider node in Figure 7
is now unspecified, and can be any of these nodes.

F. Case 5: Shared Beneficiary

This example asks the exact same type of Case 1 question
from the providers’ side. We want to find shared beneficiaries
between two providers. Although this may look repeating
Case 1, its internal data operation is not quite the same. The
synthetic data in our experiments have different number of
beneficiaries and providers. The number of beneficiaries are
ten times larger than the number of providers in all datasets.
This difference results in the difference in node degrees
between beneficiaries and providers. Provider nodes typically
would have ten times higher node degrees than beneficiary
nodes.

G. Case 6: Self Referral

Given a provider, we find self-referred claims in this ex-
ample. Figure 8 shows this self-referral in claim records. Self-
referrals have been serious problems in both private and public
healthcare sectors. For example, it is reported that doctors’
self-referral cost Medicare more than 100 million dollars [37].

Claim Provider

Cx Pa

claim to provider

referral

Figure 8: Case 4: Self Referrals For Provider A

ICD-9

Claim

Da Ca

Cx

Cy

similar

Figure 9: Similar Claims based on Diagnosis.

The self-referral diagram shown in Figure 8 would be the
simplest form of such malicious activities.

H. Case 7: Similar Record

In this use case, we find similar claims based on their diag-
nosis codes. Even this simple looking query might consume
enormous time when tables are decomposed into many and
each table has huge number of records. For example, dataset
8 in our experiments has nearly 50 million claim records. Just
scanning across all the claim records can be extremely hard
in this case.

I. Case 8: Collaborative Filtering

In this example, we design a simple collaborative filtering
application using a graph database. Suppose a situation that
a patient experiences a new symptom Da, and wants to find
a new doctor. The patient, however, wants to find a trusted
or referred doctor Px by his favorite doctor Pa. Figure 10
illustrates this process. This recommendation system utilizes
accumulated referral history of other claim records. This type
of collaborative filtering can enhance the quality in healthcare
systems, and also can provide personalized services.

VI. EXPERIMENTAL EVALUATION

In this section, we provide experimental results based on our
eight use cases. Our experiment platform is a 2.7 GHz Intel

ICD-9 Claim

Provider

Da Ca Pa

Px
recomm.

Figure 10: Collaborative Filtering using Referral History.

Core i5 machine with 4 GB 1333 MHz DDR2 Random Access
Memory. We use 5.5.28 MySQL Community Server for a
relational database, and 1.9.M02 Neo4J Community Server.
To access MySQL, we use MySQLdb Python interface 2. For
Neo4J, we use its REST API to access its data. Specifically,
we use py2neo Python interface3, and Cypher query language
is used. All the results are measured after enough cache warm
up for both databases. We generate 50 random queries for each
case, and measure their query execution times. Test cases are
sequentially executed from Case 1 to Case 8.

Figure 11 and 12 show the query performance measured
when 50 million nodes and 250 million relationships are
loaded (dataset 8). To see whether random queries are se-
quentially dependent or not, we plot their execution time over
the sequence of queries in Figure 11. Except MySQL’s case 2
performance, the query performance is stable across the query
sequence. For Case 2, we observe that MySQL internally
optimizes the Case 2 query as it gets the same type of queries.
Except the first three use cases, Neo4J outperforms MySQL
in its execution time. Figure 12 shows the same results from
a different angle. At this time, we try to see relative query
execution times between cases. As can be seen, Case 7 and
8 are especially slow in MySQL, while Neo4J shows a stable
performance over different queries.

Figure 13 and 14 illustrate the changes in query performance
across a set of different datasets. All the datasets in Table I
appear in both figures. Figure 13 shows the query scalability
by case. MySQL outperforms for the first three queries in all
datasets. For the rest of queries, MySQL fails to scale to large
data. As can be seen, the performance of MySQL resembles a
quadratic curve. Figure 14 shows the results from a different
grouping. We compare the query performance within each
database. We can observe that Neo4J also shows a quadratic
performance degradation as the size of data becomes large.
However, Neo4J’s speed of degradation is much smaller than
MySQL’s speed.

The query performance of Neo4J degrades with respect to
the degree of a node, while the performance of MySQL is
related to the size of joining tables. This finding becomes
apparent in Figure 14. In our synthetic data generation scheme,
the beneficiaries and providers have the same average degree
numbers across different datasets.

E[degree(B)] = 50 + α and E[degree(P)] = 500 + β

where α and β indicate the extra relationships such as disease
codes and ZIP codes. Therefore, the queries involving only
beneficiaries and providers show almost the same performance
regardless of the data sizes. Unlike other cases, disease nodes
are newly introduced in Case 7 and 8. The total number of
diseases are fixed in the ICD-9 definition, thus the degree of
a disease node becomes a function of the number of claims:

E[degree(D)] =
|P|
|D|
≈ |P|

15000

2http://mysql-python.sourceforge.net/MySQLdb.html
3http://py2neo.org/

Figure 12: Performance box plot when 50 million nodes
and 250 million relationships are loaded. MySQL becomes
significantly slower especially in Case 7 and 8.

Figure 14: Data Size vs. Query Processing Time. Neo4J’s
performance also degrades as the size of the data grows.
However, its degradation speed is much slower than MySQL’s
degradation speed.

Figure 11: Sequential query performance when 50 million nodes and 250 million relationships are loaded. Except first three
cases, Neo4J processes the rest of queries faster than MySQL.

Figure 13: Data Size vs. Query Processing Time. Neo4J shows almost constant performance over a set of different sized
datasets, while MySQL does not scale well in many use cases.

Figure 15: Node Degree vs. Query Processing Time (Case 7).

where |P| and |D| represent the total number of providers and
diseases, respectively. The total number of disease codes are
specified in the ICD-9 codebook, which is approximately 15K.
Figure 15 illustrates the relationship between node degree and
query processing time in Case 7. This result suggests that a
graph database can scale to very large scale healthcare data, if
their 3EG-transformed graph maintains a certain level of node
degrees.

VII. DISCUSSION AND CONCLUSION

In this section, we propose a new method of utilizing graph
databases in healthcare systems.

A. Graph Database As A De-normalized Table

The experimental results in Section VI suggests a graph
database can handle a wide range of graph queries even with
big data. In a relational database, these graph queries result
in many dummy tables, and require heavy join operations. On
the other hand, a graph database, suited for this type of online
query processing, can replace such dummy table creation.
Generating a graph database using the 3EG-transformation
may be able to serve as hundreds of different de-normalized
tables.

B. Ensemble Framework

Compared to rich history and verified stability of relational
databases, the graph database technology may be relatively
new and not yet fully confirmed from various applications.
The use cases in this paper heavily focuses on graph queries,
not the other types of queries. Basic database operations such
as select, project, union, and set difference are extensively
optimized in many relational databases.

Each database model has its own strength and weakness.
We therefore pick the strength of each database model, and
propose a cost efficient ensemble framework in healthcare
systems. Figure 16 illustrates our basic idea. A graph database
is mirrored using the 3EG transform. The access layer guides

Figure 16: Cost Efficient Ensemble Framework. A graph
database is mirrored using the 3EG transform. Access layer
mediates data users to access both RDBMS and graph
databases depending on their objectives.

data users to access both RDBMS and graph databases de-
pending on their objectives. Many existing healthcare enter-
prise data trusts are built on many layers of interdependent
databases [38]. This graph database component can be an
additional component to such enterprise architecture. Further-
more, this graph module can be placed in a decentralized
data warehousing environment as well [39]. We believe such
framework substantially can help both data management and
utilization in healthcare system.

In this paper, we proposed a novel graph database design
rationale, “3NF Equivalent Graph” (3EG) transform, which
can automatically construct a graph database from an existing
normalized relational database. We generated realistic and
large scale synthetic healthcare data to simulate the current
US healthcare systems. Our eight graph queries are evaluated
over two representative databases: MySQL for a relational
database and Neo4J for a graph database. Based on the
promising results from the experiments, we finally proposed a
blueprint for a cost efficient database architecture in healthcare
systems. Actual implementation of such system may have
undetected difficulties, and may cause other systemic issues.
Other types of graph databases, even further other types of
NoSQL databases, also can participate in this framework.
Practical evaluation of these systems would eventually lead
to our ultimate end “Best Care at Lower Cost”, and we leave
these as future work.

ACKNOWLEDGMENT

REFERENCES

[1] C. Meier, “A role for data: An observation on empowering stakeholders,”
American Journal of Preventive Medicine, 2013.

[2] World Health Statistics. World Health Organization, 2011.

[3] S. Keehan, A. Sisko, C. Truffer, S. Smith, C. Cowan, J. Poisal, M. K.
Clemens, and N. H. E. A. P. Team, “Health Spending Projections
Through 2017: The Baby-Boom Generation Is Coming To Medicare,”
Health Affairs, 2008.

[4] I. of Medicine, “Transformation of health system needed to improve
care and reduce costs,” Press Release, 9 2012.

[5] M. Smith, R. Saunders, L. Stuckhardt, and J. M. McGinnis, Best Care
at Lower Cost: The Path to Continuously Learning Health Care in
America, C. on the Learning Health Care System in America (Institute of
Medicine), Ed. The National Academies Press, 2012. [Online].
Available: http://www.nap.edu/openbook.php?record id=13444

[6] J. DeVoe, “The Unsustainable US Health Care System: A Blueprint for
Change,” Annals of Family Medicine, 2008.

[7] D. M. Cutler, K. Davis, and K. Stremikis, “The Impact of Health Reform
on Health System Spending,” Commonwealth Fund Issue Brief, 2010.

[8] D. M. Berwick and A. D. Hackbarth, “Eliminating Waste in US Health
Care,” The Journal of the American Medical Association, 2012.

[9] C. J. Date, An Introduction to Database Systems. Addison-Wesley,
2000.

[10] A. Silberschatz, H. Korth, and S. Sudarshan, Database System Concepts.
McGraw-Hill, 2002.

[11] Z. Wei, J. Dejun, G. Pierre, C.-H. Chi, and M. van Steen, “Service-
Oriented Data Denormalization for Scalable Web Applications,” in
Proceedings of the 17th International World Wide Web Conference,
2008.

[12] G. L. Sanders and S. Shin, “Denormalization Effects on Performance of
RDBMS,” in Proceedings of the 34th Hawaii International Conference
on System Sciences, 2001.

[13] R. Angles and C. Gutierrez, “Survey of Graph Database Models,” ACM
Computing Surveys, vol. 40, no. 1, 2008.

[14] A. Khan, Y. Wu, and X. Yan, “Emerging graph queries in linked
data,” in Proceedings of IEEE 28th International Conference on Data
Engineering, 2012.

[15] B. Shao, H. Wang, and Y. Xia, “Managing and mining large graphs:
Systems and implementations,” in Proceedings of ACM SIGMOD 2012,
2012.

[16] “Neo4J.” [Online]. Available: http://www.neo4j.org/
[17] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing,” in Proceedings of ACM SIGMOD 2010, 2010.

[18] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, 1970.

[19] ——, “Further normalization of the data base relational model,” IBM
Research Report RJ 909, 1971.

[20] R. Fagin, “Multivalued dependencies and a new normal form for
relational databases,” ACM Transactions on Database Systems, vol. 2,
no. 1, 1977.

[21] ——, “Normal forms and relational database operators,” in Proceedings
of ACM SIGMOD 1979, 1979.

[22] E. F. Codd, “Data Models in Database Management,” in Proceedings
of the 1980 workshop on Data abstraction, databases and conceptual
modeling, 1980.

[23] P. P. shan Chen, “The Entity-Relationship Model: Toward a Unified
View of Data,” ACM Transactions on Database Systems, vol. 1, pp.
9–36, 1976.

[24] R. H. L. Chiang, T. M. Barron, and V. C. Storey, “Reverse engineering
of relational databases: Extraction of an EER model from a relational
database,” Data and Knowledge Engineering, vol. 12, pp. 107–142,
1994.

[25] V. M. Markowitz and J. A. Makowsky, “Identifying extended entity-
relationship object structures in relational schemas,” Transactions on
Software Engineering, vol. 16, no. 8, 1990.

[26] W. J. Premerlani and M. R. Blaha, “An Approach for Reverse Engi-
neeing of Relational Databases,” Communications of the ACM, vol. 37,
1994.

[27] C. Fahrner and G. Vossen, “A survey of database design tranformations
based on the entity-relationship model,” Data and Knowledge Engineer-
ing, vol. 15, 1995.

[28] A. Maatuk, A. Ali, and N. Rossiter, “Relational database migration:
A perspective,” Database and Expert Systems Applications, vol. 5181,
2008.

[29] D. Lee, M. Mani, and W. W. Chu, “Effective Schema Conversions
between XML and Relational Models,” in Proceedings of European
Conference on Artificial Intelligence (ECAI), 2002.

[30] [Online]. Available: http://blog.neo4j.org/2012/02/webinar-follow-up-
how-to-get-started.html

[31] W. Kent, “A Simple Guide to Five Normal Forms in Relational Database
Theory,” Communications of the ACM, vol. 26, no. 2, 1983.

[32] J. Li, K.-Y. Huang, J. Jin, and J. Shi, “A survey on statistical methods for
health care fraud detection,” Health Care Management Science, 2008.

[33] C. B. Garner and D. McCabe, “The Evolving Relationships Between
Hospital, Physician and Patient in Modern American Healthcare,”
Health, Culture, and Society, vol. 3, no. 1, 2012.

[34] H. U. Prokosch and T. Ganslandt, “Perspectives for Medical Informat-
ics,” Methods of Information in Medicine, 2009.

[35] D. P. Lorence and A. Spink, “Semantics and the medical web: a review
of barriers and breakthrough s in effective healthcare query,” Health
Information and Libraries Journal, vol. 21, pp. 109–116, 2004.

[36] S. N. Murphy, M. M. Morgan, and H. C. Chueh, “Optimizing Health-
care Research Data Warehouse Design through Past COSTAR Query
Analysis,” AMIA, 1999.

[37] United States Government Accountability Office, “Higher
Use of Advanced Imaging Services by Providers Who
Self-Refer Costing Medicare Millions.” [Online]. Available:
http://www.gao.gov/assets/650/648989.pdf

[38] C. G. Chute, S. A. Beck, T. B. Fisk, and D. N. Mohr, “The enterprise data
trust at mayo clinic: a semantically integrated warehouse of biomedical
data,” JAMIA, 2013.

[39] S. Hanß, T. Schaaf, T. Wetzel, C. Hahn, T. Schrader, and T. Tolxdorff,
“Integration of Decentralized Clinical Data in a Data Warehouse,”
Methods of Information in Medicine, 2009.

