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Abstract
Unsupervised models can provide supplementary soft con-
straints to help classify new, target data since similar ob-
jects in the target set are more likely to share the same class
label. Such models can also help detect possible differences
between training and target distributions, which is useful
in applications where concept drift may take place. This
paper describes a Bayesian framework that takes as input
class labels from existing classifiers, as well as cluster labels
from a cluster ensemble operating solely on the target data
to be classified, and yields a consensus labeling of the tar-
get data. Classifiers are first designed based on labeled data
and subsequently, when unlabeled target data is available,
the existing classifiers can be effectively applied to it with
the aid of a cluster ensemble. This framework is particu-
larly useful when the statistics of the target data drift or
change from those of the training data. We also show that
the proposed framework is privacy-aware and allows per-
forming transductive learning even when data/models are
distributed and have sharing restrictions. A variety of ex-
periments with real-world data show that our framework can
yield superior results to those provided by applying classifier
ensembles only.

1 Introduction

In several data mining applications, ranging from identi-
fying distinct control regimes in complex plants to char-
acterizing different types of stocks in terms of price and
volume movements, one builds an initial classification
model that needs to be applied to unlabeled data ac-
quired subsequently. Since the statistics of the underly-
ing phenomena being modeled changes with time, these
classifiers may also need to be occasionally rebuilt if per-
formance degrades beyond an acceptable level. In such
situations, it is desirable that the classifier functions
well with as little labeling of new data as possible, since
labeling can be expensive in terms of time and money,
and a potentially error-prone process. Moreover, the
classifier should be able to adapt to changing statistics
to some extent, given the aforementioned constraints.

This paper addresses the problem of combining
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multiple classifiers and clusterers in a fairly general
setting, that includes the scenario sketched above. An
ensemble of classifiers is first learnt on an initial labeled
training dataset after which the training data can be
discarded. Subsequently, when new, unlabeled target
data is encountered, a cluster ensemble is applied to it,
thereby generating cluster labels for the target data.
The heart of our approach is a Bayesian framework
that combines both sources of information (class/cluster
labels) to yield a consensus labeling of the target data.

The setting described above is different from trans-
ductive learning setups where both labeled and unla-
beled data are available at the same time for model
building [19], as well as online methods [6]. Additional
differences from existing approaches are described in the
section on related works. For the moment we note that
the underlying assumption is that similar new objects
in the target set are more likely to share the same class
label. Thus, the supplementary constraints provided by
the cluster ensemble can be useful for improving the gen-
eralization capability of the resulting classifier system.
Also, these supplementary constraints provided by un-
supervised models can be useful for designing learning
methods that help determine differences between train-
ing and target distributions, making the overall system
more robust against concept drift.

We also show that our approach can combine cluster
and classifier ensembles in a privacy-preserving setting.
This approach can be useful in a variety of applications.
For example, the data sites can represent parties that
are a group of banks, with their own sets of customers,
who would like to have a better insight into the behavior
of the entire customer population without compromis-
ing the privacy of their individual customers.

The remainder of the paper is organized as follows.
The next section addresses related work. The proposed
Bayesian framework — named BC3E, from Bayesian
Combination of Classifiers and Clusterer Ensembles —
is described in Section 3. Issues with privacy preserva-
tion are discussed in Section 4 and the experimental
results are reported in Section 5. Finally, Section 6 con-
cludes the paper.



2 Related Work

The combination of multiple classifiers to generate an
ensemble has been proven to be more useful compared
to the use of individual classifiers [17]. Analogously,
several research efforts have shown that cluster ensem-
bles can improve the quality of results as compared to a
single clusterer — e.g., see [21] and references therein.
Most of the motivations for combining ensembles of clas-
sifiers and clusterers are similar to those that hold for
the standalone use of either classifier or cluster ensem-
bles. Additionally, unsupervised models can provide
supplementary constraints for classifying new data and
thereby improve the generalization capability of the re-
sulting classifier. To that end, we present a Bayesian
framework (BC3E) to combine cluster and classifier en-
sembles. BC3E receives as inputs the class labels (from
a classifier ensemble) and the cluster labels (from a clus-
ter ensemble) of the objects of the target set and outputs
their class probability distributions.

Specific mechanisms for combining classification
and clustering models however have only been recently
introduced in the Bipartite Graph-based Consensus
Maximization (BGCM) algorithm [13] and in the C3E
algorithm [3]. Both these algorithms have parameters
that control the relative importance of classifiers and
clusterers. In traditional semi-supervised settings, such
parameters can be optimized via cross-validation in
the training set. However, if the training and the
target distributions are different, cross-validation is not
possible. From this viewpoint, our approach (BC3E)
can be seen as an extension of C3E [3] that is capable
of dealing with this issue in a more principled way. In
addition, the algorithms in [13, 3] do not deal with
privacy issues, whereas our probabilistic framework can
combine class labels with cluster labels under conditions
where sharing of individual records across data sites is
not permitted. It uses a soft probabilistic notion of
privacy, based on a quantifiable information-theoretic
formulation [16]. Note that existing works on Bayesian
classifier ensembles — e.g., [10, 8, 14] — do not deal
with privacy issues.

From the clustering side, the proposed model bor-
rows ideas from the Bayesian Cluster Ensemble [21].
In [1], we introduced some preliminary ideas that are
further developed in our current paper. In particular,
the algorithm in [1] is not capable of automatically es-
timating the importance that classifiers and clusterers
should have. This property is fundamental for applica-
tions where training and target distributions are differ-
ent. In addition, the Bayesian model presented here is
considerably different and requires more sophisticated
inference and estimation procedures.

3 Probabilistic Model

We assume that a classifier ensemble has been (previ-
ously) induced from a training set. At this point, the
training data can be discarded if so desired. Such a
classifier ensemble is employed to generate a number of
class labels (one from each classifier) for every object in
the target set. BC3E refines such classifier prediction
with the help of a cluster ensemble. Each base cluster-
ing algorithm that is part of the ensemble partitions the
target set, providing cluster labels for each of its objects.
From this point of view, the cluster ensemble provides
supplementary constraints for classifying those objects,
with the rationale that similar objects — those that are
likely to be clustered together across (most of) the par-
titions that form the cluster ensemble — are more likely
to share the same class label.

Consider a target set X = {xn}Nn=1 formed by N
unlabeled objects. A classifier ensemble composed of
r1 models has produced r1 class labels for every object
xn ∈ X . It is assumed that the target objects belong
to k classes denoted by C = {Ci}ki=1 and at least
one object from each of these classes was observed in
the training phase (i.e. we do not consider “novel”
classes in the target set). Similarly, consider that a
cluster ensemble comprised of r2 clustering algorithms
has generated cluster labels for every object in the target
set. The number of clusters need not be the same across
different clustering algorithms. Also, it should be noted
that the cluster labeled as 1 in a given data partition
may not align with the cluster numbered 1 in another
partition, and none of these clusters may correspond to
class 1. Given the class and cluster labels, the objective
is to come up with refined class probability distributions
{(P̂ (Ci|xn))ki=1 = yn}Nn=1 of the target set objects. This
framework is illustrated in Fig. 1.

The observed class and cluster labels are repre-
sented as W = {{w1nl}, {w2nm}} where w1nl is the 1-
of-k representation of class label of the nth object given
by the lth classifier, and w2nm is the 1-of-k representa-
tion of cluster label assigned to the nth object by the
mth clusterer. A generative model is proposed to ex-
plain the observations W , where each object xn has an
underlying mixed-membership to the k different classes.
Let f(yn) denote the latent mixed-membership vector

for xn, where f(x) = exp(xi)∑
i=1 exp(xi)

is the softmax func-

tion. yn is sampled from a normal distributionN (µ,Σ).
Also, corresponding to the ith class and mth base clus-
tering, we assume a multinomial distribution βmi over
the cluster labels of the mth base clustering. Therefore,

βmi is of dimension k(m) and
∑k(m)

j=1 βmij = 1 if the mth

base clustering has k(m) clusters. The data generative
process, whose corresponding graphical model is shown
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These successes provide the motivation for designing effective ways of leveraging both classifier and cluster ensembles to solve challenging prediction problems.



Figure 1: Combining Classifiers and Clusterers.
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Figure 2: Graphical Model for BC3E

in 2, can be summarized as follows.
For each xn ∈ X :

1. Choose yn ∼ N (µ,Σ), where µ ∈ Rk is the mean
and Σ ∈ Rk×k is the covariance.

2. Choose θn ∼ N (yn, δ
2Ik), where δ2 ≥ 0 is the

scaling factor of the covariance of the normal
distribution centered at yn, and Ik is the identity
k × k matrix.

3. ∀l ∈ {1, 2, · · · , r1}, choose w1nl ∼ f(yn).

4. ∀m ∈ {1, 2, · · · , r2}:

(a) Choose znm ∼ f(θn), where znm is a k-
dimensional vector with 1-of-k representation.

(b) Choose w2nm ∼ multinomial(βrznm
).

The observed class labels {w1nl} are assumed to
be sampled from the latent mixed-membership vector
f(yn). If the nth object is sampled from the ith class
in the mth base clustering (implying znmi = 1), then
its cluster label will be sampled from the multinomial
distribution βmi. This particular generative process
is analogous to the one used by the Bayesian Cluster
Ensemble in [21]. The fact that θn is sampled from
N (yn, δ

2Ik) needs further clarification. In practice, the
observed class labels and cluster labels carry different
intrinsic weights. If the observations from the classi-
fiers are assigned too much weight compared to those
from clustering, there is little hope for the clustering
to enhance classification. Similarly, if the observations
from the clustering are given too much of importance,
the classification performance might deteriorate. Ide-
ally, the unsupervised information is only expected to
enhance the classification accuracy.

Aimed at building a “safe” model that can intel-
ligently utilize or reject the unsupervised information,

θn is sampled from N (yn, δ
2Ik) where the parameter

δ decides how much the observations from the cluster-
ings can be trusted. If δ2 is a large positive number,
yn does not have to explain the posterior of θn. From
the generative model perspective, this means that the
sampled value of θn is not governed by yn anymore as
the distribution has very large variance. On the other
hand, if δ2 is a small positive number, yn has to ex-
plain the posterior of θn and hence the observations
from the clustering. Therefore, the posteriors of {yn}
are expected to get more accurate compared to the case
if they only had to explain the classification results. A
concrete quantitative argument for this intuitive state-
ment will be presented later.

To address the log-likelihood function of BC3E,
let us denote the set of hidden variables by Z =
{{yn, {θn}, {znm}}. The model parameters can conve-
niently be represented by ζ0 = {µ,Σ, δ2, {βmi}}. The
joint distribution of the hidden and observed variables
can be written as:

(3.1) p(X,Z|ζ0) =

N∏
n=1

p(yn|µ,Σ)p(θn|yn, δ2Ik).

r1∏
l=1

p(w1nl|f(yn))

r2∏
m=1

p(znm|f(θn))p(w2nm|β, znm)

The inference and estimation is performed using Varia-
tional Expectation-Maximization (VEM) to avoid com-
putational intractability due to the coupling between θ
and β.

3.1 Approximate Inference and Estimation:

3.1.1 Inference: To obtain a tractable lower bound
on the observed log-likelihood, we specify a fully factor-
ized distribution to approximate the true posterior of



the hidden variables:

q(Z|{ζn}Nn=1) =

N∏
n=1

q(yn|µn,Σn)q(θn|εn,∆n)

r2∏
m=1

q(znm|φnm)(3.2)

where yn ∼ N (µn,Σn), θn ∼ N (εn,∆n) ∀n ∈
{1, 2, · · · , N}, znm ∼ multinomial(φnm) ∀n ∈
{1, 2, · · · , N} and ∀m ∈ {1, 2, · · · , r2}, and ζn =
{µn,Σn, εn,∆n), {φnm}} – the set of variational pa-
rameters corresponding to the nth object. Further,
µn, εn ∈ Rk, Σn,∆n ∈ Rk×k ∀n and φnm =
(φnmi)

k
i=1 ∀n,m; where the components of the corre-

sponding vectors are made explicit. To keep calcula-
tions simpler and also to work with less parameters,
all the covariance matrices are assumed to be diagonal.
Therefore, Σ = diag

(
(σi)

k
i=1

)
, Σn = diag

(
(σni)

k
i=1

)
,

and ∆n = diag
(
(δni)

k
i=1

)
. Using Jensen’s inequality, a

lower bound on the observed log-likelihood can be de-
rived as:

log[p(X|ζ0)] ≥ Eq(Z) [log[p(X,Z|ζ0)]] +H(q(Z))

= L(q(Z))(3.3)

where H(q(Z)) = −Eq(Z)[log[q(Z)]] is the entropy of
the variational distribution q(Z), and Eq(Z)[.] is the
expectation w.r.t q(Z).

Let Q be the set of all distributions having a
fully factorized form as given in (3.2). The optimal
distribution that produces the tightest possible lower
bound L is given by:

q∗ = arg min
q∈Q

KL(p(Z|X, ζ0)||q(Z)).(3.4)

In equations (4), (6), (8), (10), (12), (13) and (14) in
table 1, the optimal values of the variational parameters
that satisfy (3.4) are presented. Since the logistic
normal distribution is not conjugate to multinomial,
the update equations of all the parameters cannot be
obtained in closed form. For the parameters that do
not have a closed form solution for the update, we
just present the part of the objective function that
depends on the concerned parameter and some numeric
optimization method has to be used for optimizing the
lower bound. Since φnm is a multinomial distribution,
the updated values of the k components should be
normalized to unity. Note that the optimal value of
one of the variational parameters depends on the others
and, therefore, an iterative optimization is adopted to
minimize the lower bound till convergence is achieved.

.4
Equations (6) and (8) present updates for two

new parameters. These parameters come from

Eq(log p(w1nl|f(yn))) and Eq(log p(znm|f(θn))) re-
spectively. Both of these integrations do not have ana-
lytic solution and hence a first order Taylor approxima-
tion is utilized as also done in [5]. A closer inspection
of (12) reveals that δ2 appears in the denominator of

the term

k∑
i=1

(µni − εni)
2/δ2 in the objective. Hence,

larger values of δ2 will nullify any effect from εn which,
in turn, is affected by the observations {w2nm} (as is
obvious from (14)). On the other hand, if δ2 is small
enough, εn can strongly impact the values of µn.

3.1.2 Estimation: For estimation, we maximize the
optimized lower bound obtained from the variational in-
ference w.r.t the free model parameters ζ0 (by keeping
the variational parameters fixed). The optimal values
of the model parameters are presented in equations (5),
(7) and (9). Since βmi is a multinomial distribution,
the updated values of k(m) components should be nor-
malized to unity. However, no closed form of update
exists for σ2, and a numeric optimization method has
to be resorted to. The part of the objective function
that depends on σ2 is provided in Eq. (11). Once
the optimization in M-step is done, E-step starts and
the iterative update is continued till convergence. The
variational parameters {µn}Nn=1 are then investigated
which serve as proxy for the refined posterior estimates
of {yn}Nn=1. The main steps of inference and estimation
are concisely presented in Algorithm 1.

Algorithm 1 Learning BC3E
Input: W .

Output: θm, {µn}Nn=1.

Initialize θm, {ζn}Nn=1.

Until Convergence
E-Step

Until Convergence

1. Update κn using Eq. (6) ∀n ∈ {1, 2, · · · , N}.
2. Update ξn using Eq. (8) ∀n ∈ {1, 2, · · · , N}.
3. Update φnmi using Eq. (4) ∀n,m, i. Normalize φnm.

4. Maximize (12) w.r.t. µn ∀n.
5. Maximize (13) w.r.t. σ2

n ∀n s.t. σ2
n ≥ 0.

6. Maximize (14) w.r.t. εn ∀n.
7. Maximize (10) w.r.t. δ2n ∀n s.t. δ2n ≥ 0.
M-Step

8. Update µ using Eq. (5).
9. Update δ2 using Eq. (9).

10. Update βmij using Eq. (7) ∀m, i, j. Normalize θmi.
11. Maximize (11) w.r.t. σ2 s.t. σ2 ≥ 0.

4 Privacy Preserving Learning

Most of the privacy-aware distributed data mining tech-
niques developed so far have focused on classifica-

Joydeep1
Highlight



Table 1: Equations for update of variational and model parameters in BC3E

Update Equations

φ∗nmi ∝ exp

εni +

k(m)∑
j=1

βmijw2nmj

 ∀n,m, i. (4) µ∗ = 1
N

N∑
n=1

µn. (5)

κ∗n =

k∑
i=1

exp(µni + σ2
ni/2) ∀n. (6) β∗mij ∝

N∑
n=1

φnmiw2nmj ∀j ∈ 1, 2, · · · , km. (7)

ξ∗n =

k∑
i=1

exp(εni + δ2ni/2) ∀n. (8) δ2 = 1
Nk

N∑
n=1

k∑
i=1

[
(εni − µni)2 + σ2

ni + δ2ni
]
. (9)

L[δ2n] = −
1
2

k∑
i=1

δ2ni

δ2
−

1

2

k∑
i=1

log(δ
2
ni)−

r2

ξn

k∑
i=1

exp(εni + δ
2
ni/2). (10) L[σ2] = −

N
2

k∑
i=1

log(σ
2
i )−

1

2

N∑
n=1

k∑
i=1

[σ2
ni + (µni − µi)

2

σ2
i

]
. (11)

L[µn]
= − 1

2

k∑
i=1

(µni − µi)2

σ2
i

− 1

2δ2

k∑
i=1

(µni − εni)2 +

r1∑
l=1

k∑
i=1

w1nliµni −
r1
ξn

k∑
i=1

exp(µni + σ2
ni/2). (12)

L[σ2
n]

= − 1
2

k∑
i=1

σ2
ni

σ2
i

− 1

2

k∑
i=1

log(σ2
ni)−

1

2

k∑
i=1

σ2
ni

δ2
− r1
κn

k∑
i=1

exp(µni + σ2
ni/2). (13)

L[εn] =

r2∑
m=1

k∑
i=1

φnmiεni −
1

ξn

k∑
i=1

exp(εni + δ2ni/2)− 1

2

k∑
i=1

(εni − µni)2

δ2
. (14)

tion or on association rules [4, 11]. There has also
been some work on distributed clustering for vertically
partitioned data (different sites contain different at-
tributes/features of a common set of records/objects)
[15], and on parallelizing clustering algorithms for hori-
zontally partitioned data (i.e. the objects are distributed
amongst the sites, which record the same set of features
for each object) [9]. These techniques, however, do not
specifically address privacy issues, other than through
encryption [20].

This is also true of earlier, data-parallel methods
[9] that are susceptible to privacy breaches, and also
need a central planner that dictates what algorithm
runs on each site. Finally, recent works on distributed
differential privacy focus on query processing rather
than data mining [7].

In the sequel, we show that the inference and esti-
mation in BC3E using VEM allows solving the clus-
ter ensemble problem in a way that preserves privacy.
Depending on how the objects with their cluster/class
labels are distributed in different “data sites”, we can
have three scenarios – i) Row Distributed Ensemble, ii)
Column Distributed Ensemble, and iii) Arbitrarily Dis-
tributed Ensemble.

4.1 Row Distributed Ensemble: In the row dis-
tributed ensemble learning framework, the test set X is
partitioned into D parts and different parts are assumed
to be at different locations. The objects from partition d

are denoted by Xd so that X = ∪Dd=1Xd. Now, a careful
look at the E-step equations reveal that the update of
variational parameters corresponding to each object in
a given iteration is independent of those of other objects
given the model parameters from a previous iteration.
Therefore, we can maintain a client-server based frame-
work where the server only updates the model param-
eters (in the M-step) and the clients (there should be
as many number of clients as there are distributed data
sites) update the variational parameters of the objects
in the E-step.

For instance, consider a situation where a dataset
is partitioned into two subsets X1 and X2 and these two
subsets are located in two different data sites. Data
site 1 has access to X1 and a set of clustering and
classification results pertaining to objects belonging to
X1. Similarly, data site 2 has access to X2 and a set of
clustering and classification results corresponding to X2.
Further assume that a set of distributed classification
(clustering) algorithms were used to generate the class
(cluster) labels of the objects belonging to each set.
Now, data site 1 can update the variational parameters
ζn, ∀xn ∈ X1. Similarly, data site 2 can update the
variational parameters for all objects xn ∈ X2. Once the
variational parameters are updated in the E-step, the
server gathers information from two sites and updates
the model parameters. Now, a closer inspection of
the M-step update equations reveals that each of them
contains a summation over the objects. Therefore,



individual data sites can send only some collective
information to the server without transgressing privacy.
For example, consider the update equation for βmij . Eq.
(7) can be broken as follows:

(4.5) βmij
∗ ∝

∑
xn∈X1

φnliw2nli +
∑
xn∈X2

φnliw2nli

The first and second terms can be calculated in data
sites 1 and 2 separately and sent to the server where
the two terms can be added and βmij can get updated
∀m, i, j. Similarly, the other M-step update equations
(performed by the server in an analogous way) also do
not reveal any information about class or cluster labels
of objects belonging to different data sites, and the
privacy is preserved thereby.

4.2 Column Distributed Ensemble: In the col-
umn distributed framework, different data sites share
the same set of objects but only a subset of base clus-
terings or classification results are available to each data
site. For example, consider that we have two data sites
and four sets of class and cluster labels and each data
site has access to only two sets of classification or clus-
tering results. Without loss of generality, it can be as-
sumed that data site 1 has access to the 1st and 2nd

classification and clustering results and data site 2 has
access to the rest of the results. As in the earlier case, a
single server and two clients (corresponding to two dif-
ferent data sites) are maintained. Since each data site
has access to all the objects, it is necessary to share the
variational parameters corresponding to these objects.
Therefore, {κn, ξn,µn,σn, εn, δn}Nn=1 are all updated in
the server (which is accessible from each client).

The site (and object) specific variational parameters
{φnmi}, however, cannot be shared and should be
updated in individual sites. This means that the
updates (6), (8), (12), (14), (10) and (13) should be
performed in the server. On the other hand, the update
for {φnmi}∀n, i and m ∈ {1, 2} (corresponding to the
1nd and 2nd clustering or classification results) should
be performed in data site 1. Similarly, the update for
{φnmi} ∀n, i and m ∈ {3, 4} has to be performed in data
site 2. However, while updating {µn}, the calculation of

the term

r1∑
l=1

k∑
i=1

w1nliµni has to be performed without

revealing the class labels {w1nl} to the server. To that
end, it can be rewritten as:
(4.6)
r1∑
l=1

k∑
i=1

w1nliµni =

2∑
l=1

k∑
i=1

w1nliµni +

4∑
l=3

k∑
i=1

w1nliµni,

where the first term can be computed in data site 1 and
the second term can be computed by data site 2 and

then can be added in the server. It can be seen that
{w1nl} can never be recovered by the server and hence
privacy is ensured in the updates of the E-step. Except
for {βmij}, all other model parameters can be updated
in the server in the M-step. However, the parameters
{βmij} have to be updated separately inside the clients.
Note that, since {βmij} do not appear in any update
equation performed in the server, there is no need to
send these parameters to the server either. Therefore,
in essence, the clients update the parameters {φnmi}
and {βmij} in E-step and M-step respectively, and the
server updates the remaining parameters.

4.3 Arbitrarily Distributed Ensemble: In an ar-
bitrarily distributed ensemble, each data site has access
to only a subset of the data points or a subset of the
classification and clustering results. Fig. 3 shows a situ-
ation with arbitrarily distributed ensemble with six data
sites.

We now refer to Fig. 4 and explain the privacy
preserved EM update for this setting. As before, corre-
sponding to each different data site, a client node is cre-
ated. Clients that share a subset of the objects should
have access to the variational parameters corresponding
to common objects. To highlight the sharing of objects
by clients, the test set X is partitioned into four subsets
— X1,X2,X3 andX4 as shown in Fig. 3. Similarly, the
columns are also partitioned into three subsets: G1, G2,
and G3.

Now, corresponding to each row partition, an “Aux-
iliary Server”(AS) node is created. Each AS updates
the variational parameters corresponding to a set of
shared objects. For example, in Fig. 4.3, AS1 updates
the variational parameters corresponding to X1 (using
equations (8), (6), (12), (13), (14), and (10)). However,
any variational parameter that is specific to both an
object and a column is updated separately inside the
corresponding client (and hence it is connected with C1

and C2). Therefore, {φnmi : n ∈ X1,m ∈ G1} are up-
dated inside client 1 and {φnmi : n ∈ X1,m ∈ G2 ∪G3}
are updated inside client 2 (using Eq. (4)). Once all
variational parameters are updated in the E-step, M-
step starts. Corresponding to each column partition, an
“Auxiliary Client” (AC) node is created. This node up-
dates the model parameters βmij (using Eq. (7)) which
are specific to columns belonging to G1. Since C1, C3,
and C5 share the columns from the subset G1, AC1 is
connected with these three nodes in Fig. 4.3. The re-
maining model parameters are, however, updated in a
“Server” (using equations (5), (9), (11)).

In Fig. 4.3, the bidirectional edges indicate that
messages are sent to and from the connecting nodes. We
have avoided separate arrows for each direction only to
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keep the figure uncluttered and each bidirectional edge
should be thought of as two unidirectional edges super-
imposed. The edges are also numbered near to their
origin. For a comprehensive understanding of the pri-
vacy preservation, the messages transfered through each
edge have also been enlisted in the supplementary mate-
rial. The messages sent from the auxiliary servers to the
main server are of the form given in Eq. (4.5) and are
denoted as “partial sums” only to make the table un-
cluttered. Expectedly, messages sent out from a client
node are “masked” in such a way that no other node
can decode the cluster labels or class labels of points
belonging to that client. Thus privacy is completely en-
sured. Note that this approach is completely general
and will work for any arbitrarily partitioned ensemble
given that each partition contains at least two sets of
classification results. As far as the auxiliary clients and
servers are concerned, these are helpful in conceptual
understanding of the parameter update and sharing. In
practice, there is no real need for these extra storage
devices/locations. Client nodes can themselves take the
place of ASs and ACs and even the main server as long
as the updates are performed in proper sequence.

5 Experiments

In this section, two different sets of experiments are
reported. The first set is for transfer learning with a
text classification data from eBay Inc. The other set
is for non-transductive semisupervised learning where
some publicly available datasets are used to simulate
the working environment of BC3E.

5.1 Transfer Learning: To show the capability of
BC3E in solving transfer learning problems, we use
a large scale text classification dataset from eBay Inc.
The training data consists of 83 million items sold over
three months and the test set contains several million
items sold a few days after the training period. More
details about the dataset can be found in [18]. eBay
organizes items into a six-level category structure where
there are 39 top level nodes called meta categories
and 20K+ bottom level nodes called leaf categories.
The dataset is generated when users provide the titles
of items they intend to sell on eBay. Each title is
limited to 50 characters, based on which the user gets
recommendation of some leaf categories the item should
belong to. Such categorization of the item helps a seller
list an item in the correct branch of the product list,
thereby allowing a buyer more easily search through a
list of few million items sold via eBay every single day.
A carefully designed k-nn classifier (with the help of
improved search engine algorithms) categorizes each of
such titles in less than 100 ms [18]. However, due to
such large number of categories (20K), items belonging
to similar types of categories often get misclassified.

To avoid such confusion, larger categories are
formed by aggregating examples from categories which
are relatively difficult to separate. Such aggregation is
easy once the confusion matrix, obtained from a devel-
opment dataset, is partitioned and strongly connected
vertices are identified from the confusion graph. Note
that the large categories so discovered might not at all
follow the internal hierarchy that is maintained. Next,

Joydeep1
Cross-Out

Joydeep1
Replacement Text
the items?

Joydeep1
Cross-Out

Joydeep1
Replacement Text
the 



clustering is performed with examples belonging to each
of the large categories and the clustering results, along
with the predictions from k-nn classification, are fed to
BC3E (and also its competitors i.e. C3E, BGCM,
and LWE). The idea here is to first reduce the classifi-
cation space and then use unsupervised information to
refine the predictions from k-nn on a smaller number of
categories. The number of leaf categories belonging to
such large categories usually varies from 4-10.

However, the dataset is very dynamic and typi-
cally over a span of three months, 20% of new words
are added to the existing vocabulary. One can retrain
the existing k-nn classifier every three months, but the
training process requires collecting new labeled data
which is time consuming and expensive. One can addi-
tionally design classifiers to segregate examples belong-
ing to each of the large categories. However, such ap-
proach might not improve much upon the performance
of the initial k-nn classifier if the data changes so fre-
quently. Therefore, we require a system that can adap-
tively predict newer examples without retraining the
existing classifier or employing another set of low-level
classification algorithms. BC3E is very useful in such
settings. The parameter δ can adjust the weights of pre-
diction from classifiers and unsupervised information.
As the results reported in Table 5.1 reveal, as long as
the classification performance is not that poor, BC3E
can improve on the performance of k-nn using the clus-
tering ensemble.

The column group ID denotes anonymized groups
representing different large categories. |X | shows the
number of examples in the test data. The column
C3E-Ideal shows the performance of C3E if the correct
tuning parameter for C3E were known. For a transfer
learning problem, estimating such tuning parameter
requires some labeled data from the target set which
is not available in our setting. If the tuning parameter
is chosen from cross-validation on the training data, the
final prediction on target set can get affected adversely
if the underlying distribution changes (and in fact
it does in our experiments). Therefore, we need to
adopt a fail-safe approach where we can do at least as
good as the k-nn prediction. The results reveal that
BC3E significantly outperforms BGCM and LWE,
and sometimes achieves as good a performance as C3E-
Ideal (i.e. when correct tuning parameter of C3E is
known). The performance of C3E-Ideal can essentially
be considered as the best accuracy one could achieve
from the given inputs (i.e. class and cluster labels)
using other existing algorithms — BGCM, LWE, C3E
— that work on the same design space. Though
BGCM has a tuning parameter, its variation did not
affect performance much and we just report results

corresponding to unity value of this parameter.

5.2 Semi-supervised Learning: Six datasets are
used in our experiments for semi-supervised learning:
Half-Moon (a synthetic dataset with two half circles
representing two classes), Circles (another synthetic
dataset that has two-dimensional instances that form
two concentric circles — one for each class), and four
datasets from the Library for Support Vector Machines
— Pima Indians Diabetes, Heart, German Numer, and
Wine. In order to simulate real-world classification
problems where there is a very limited amount of labeled
instances, small percentages (see the values reported
in Table ) of the instances are randomly selected for
training, whereas the remaining instances are used for
testing (target set). We perform 20 trials for every
dataset. For running experiments with BGCM, LWE,
and C3E, the parameters reported in [13], [12], and
[2] are used respectively. The parameters of BC3E
are initialized randomly and approximately 10 EM
iterations are enough to get the results reported in
Table 5.2. The classifier ensemble consists of decision
tree (C4.5), linear discriminant, and generalized logistic
regression. Cluster ensembles are generated by means
of multiple runs of k-means [2].

6 Conclusion and Future Work

The proposed model has been shown to be useful for
non-transductive semisupervised and transfer learning
problems. The model, with some modification, can
handle soft outputs from classification and clustering
ensembles which can further improve the results.
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