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Abstract. This paper introduces a novel splitting criterion parametrized
by a scalar ‘α’ to build a class-imbalance resistant ensemble of decision
trees. The proposed splitting criterion generalizes information gain in
C4.5, and its extended form encompasses Gini(CART) and DKM split-
ting criteria as well. Each decision tree in the ensemble is based on a
different splitting criterion enforced by a distinct α. The resultant en-
semble, when compared with other ensemble methods, exhibits improved
performance over a variety of imbalanced datasets even with small num-
bers of trees.

1 Introduction

Imbalanced datasets are pervasive in real-world applications, including fraud
detection, risk management, text classification, medical diagnosis etc. Despite
their frequent occurrence and huge impact in day to day applications, many
standard machine learning algorithms fail to address this problem properly since
they assume either balanced class distributions or equal misclassification costs
[10]. There have been various approaches proposed to deal with imbalanced
classes, including: over/undersampling [13], [17], SMOTE (synthetic minority
oversampling technique), cost-sensitive [15], modified kernel-based, and active
learning methods [1], [8].

Several authors have tried to theoretically address the nature of the class
imbalance problem [3], [11], [18]. Their results suggest that the degree of im-
balance is not the only factor hindering the learning process [10]. Rather, the
difficulties reside with various other factors such as overlapping classes, lack of
representative data, small disjuncts etc, that get amplified when the distribu-
tion of classes is imbalanced. In this paper, we approach the imbalanced learning
problem by combining multiple decision trees. If these different “base” classifiers
can focus on different features of the data and handle complex objectives collab-
oratively, then an ensemble of such trees can perform better for datasets with
class imbalance.

Breiman had observed that the most challenging classification problem is how
to increase simplicity and understanding without losing accuracy [16]. Also, it
has been shown that a small variety of strong learning algorithms are typically
more effective than using a large number of dumbed-down models [9]. So a second
goal is to build robust, imbalance-resistant ensembles using only a few classifiers.



While many ensemble trees induce diversity using random selection of fea-
tures or data points, this paper proposes a novel splitting criterion parametrized
by a scalar α. By varying α, we get dissimilar decision trees in the ensemble.
This new approach results in ensembles that are reasonably simple yet accurate
over a range of class imbalances.

We briefly summarize the main contributions of this paper here:

1. We introduce a new decision tree algorithm using α-divergence. A generalized
tree induction formula is proposed, which includes Gini, DKM, and C4.5
splitting criteria as special cases.

2. We propose a systematic ensemble algorithm using a set of α-Trees covering
a range of α. The ensemble shows consistent performance across a range of
imbalance degrees. The number of classifiers needed in the method is far less
than Random Forest or other ensembles for a comparable performance level.

Related Work Several approaches try to tackle the imbalanced learning prob-
lem by oversampling or generating synthetic data points in order to balance the
class distributions [14]. An alternative is to employ cost-sensitive methods that
impose different misclassification costs. Even though these methods have shown
good results, their performance depends on heuristics that need to be tuned to
the degree of imbalance.

Ensemble methods generally outperform single classifiers [5], and decision
trees are popular choices for the base classifiers in an ensemble [2]. In recent
years, the Random Forest has been modified to incorporate sampling techniques
and cost matrices to handle class-imbalance [6]. Though this modified Random
Forest shows superior performance over other imbalance-resistant classifiers, its
complexity increases too.

Some of the earlier works such as [4] by L. Breiman investigate various split-
ting criteria - Gini impurity, Shannon entropy and twoing in detail. Dietterich
et. al. [7] showed that the performance of a tree can be influenced by its split-
ting criteria and proposed a criterion called DKM which results in lower error
bounds based on the Weak Hypothesis Assumption. Karakos et. al. proposed
Jensen-Rényi divergence parametrized by a scalar α as a splitting criterion [12],
but the determination of the“best” α was based on heuristics.

This paper applies a novel splitting criterion(α-divergence) to ensemble meth-
ods to solve the class imbalance problem with a small number of base trees.
Decision trees based on distinct α values possess different properties, which in
turn increases diversity in the ensemble.

2 Preliminaries

α-Divergence Decision tree algorithms try to determine the best split based
on a certain criterion. However, the “best” split usually depends on the char-
acteristics of the problem. For example, for some datasets we might want ‘low
precision’-‘high recall’ results and for some the other way around. For this to be
resolved it’s better to have a criterion that can be adapted by easy manipulation.



Our metric, α-divergence, which generalizes KL-divergence [19], easily achieves
this feat.

Dα(p||q) =

∫
x
αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx

α(1− α)
(1)

where p, q are any two probability distributions and α is a real number. Some
special cases are:

D 1
2
(p||q) = 2

∫
x

(
√
p(x)−

√
q(x))2dx (2)

lim
α→1

Dα(p||q) = KL(p||q) (3)

D2(p||q) =
1

2

∫
x

(p(x)− q(x))2

q(x)
dx (4)

Equation (2) is Hellinger distance, and equation (3) is KL-divergence. α-
Divergence is always positive and is 0 if and only if p = q. This enables α-
divergence to be used as a (dis)similarity measure between two distributions.

Splitting Criterion using α-Divergence The splitting criterion function of
C4.5 can be written using α-divergence as :

I(X;Y ) = lim
α→1

Dα(p(x, y)||p(x)p(y)) = KL(p(x, y)||p(x)p(y)) (5)

where p(x, y) is a joint distribution of a feature X and the class label Y , and
p(x) and p(y) are marginal distributions. To maintain consistency with the C4.5
algorithm, a new splitting criterion function is proposed as follows:

Definition 1. α-Divergence splitting criterion is Dα(p(x, y)||p(x)p(y)), where
0 < α < 2.

Note that α = 1 gives the information gain in C4.5.

Using this splitting criterion, a splitting feature is selected, which gives the
maximum α-divergence splitting criterion.

Constructing an α-Tree Using the proposed decision criterion the decision
tree induction follows in algorithm 1. Let us call this new tree as α-Tree. In
algorithm 1 ‘Classify’ can be either ‘majority voting’ or ‘probability approxi-
mation’ depending on the purpose of the problem. This paper uses ‘probability
approximation’ as ‘majority voting’ might cause overfitting for the imbalanced
data. The effect of varying α will be discussed in Section 4.2.



Algorithm 1 Grow Single α-Tree

Input: Training Data (features X1, X2, ..., Xn and class Y ), α ∈ (0, 2)
Output: α-Tree
Select the best feature X∗, which gives the maximum α-divergence criterion
if (no such X∗) or (number of data points < cut-off size) then

return Classify(Training Data)
else

partition the training data into m subsets, based on the value of X∗

for for i = 1 to m do
ith child = Grow Single α-Tree ( ith partitioned data, α)

end for
end if

3 Properties of α-Divergence Criterion

Properties of α-Divergence If both p(x, y) and p(x)p(y) are properly defined
probability distributions, then the above α-divergence becomes:

Dα(p(x, y)||p(x)p(y)) = EX [Dα(p(y|x)||p(y))]. (6)

Consider two Bernoulli distributions, p(x) and q(x) having the probability of
success θp, θq respectively, where 0 < θp, θq < 1/2. Then the α-divergence from
p(x) to q(x) and its 3rd order Taylor expansion w.r.t. θp is:

Dα(p||q) =
1− θpαθq1−α − (1− θp)α(1− θq)1−α

α(1− α)
(7)

≈ A(θp − θq)2 +B(α− 2)(θp − θq)3 (8)

where A = 1
2 ( 1
θq

+ 1
1−θq ), B = 1

6 ( 1
θq2 − 1

(1−θq)2 ) and A,B > 0. Then, given

0 < α < 2 and θp > θq, the 3rd order term in equation (8) is negative. So by
increasing α the divergence from p to q increases. On the other hand if θp < θq
the 3rd order term in equation (8) is positive and increasing α decreases the
divergence. This observation motivates proposition 1 below. Later we describe
proposition 2 and its corollary 1.

Proposition 1. Assume that we are given Bernoulli distributions p(x), q(x) as
above and α ∈ (0, 2). Given θq < 1/2, ∃ ε > 0 s.t. Dα(p||q) is a monotonic
‘increasing’ function of α where θp ∈ (θq, θq + ε), and ∃ ε′ > 0 s.t. Dα(p||q)
is a monotonic ‘decreasing’ function of α where θp ∈ (θq − ε′, θq). (Proof. This
follows from equation (8).)

Proposition 2. Dα(p||q) is convex w.r.t. θp. (Proof. 2nd derivative of equation
(7) w.r.t θp is positive.)

Corollary 1. Given binary distributions, p(x), q(x), r(x), where 0 < θp <
θq < θr < 1, Dα(q||p) < Dα(r||p) and Dα(q||r) < Dα(p||r). (Proof. Since
Dα(s(x)||t(x)) ≥ 0 and is equal if and only if s(x) = t(x), using proposition 2,
corollary 1 directly follows.)



Effect of varying α Coming back to our original problem, let us assume that
we have a binary classification problem whose positive class ratio is θc where
0 < θc � 1/2 (imbalanced class). After a split, the training data is divided into
two subsets: one with higher (> θc) and the other with lower (< θc) positive
class ratio. Let us call the subset with higher positive class ratio as positive, and
the other as negative subset. Without loss of generality, suppose we have binary
features X1, X2, ..., Xn and p(y = 1|xi = 0) < p(y = 1) < p(y = 1|xi = 1) and
p(xi) ≈ p(xj) for any i, j. From equation (6) the α-divergence criterion becomes:

p(xi = 1)Dα(p(y|xi = 1)||p(y)) + p(xi = 0)Dα(p(y|xi = 0)||p(y)) (9)

where 1 ≤ i ≤ n. From ‘proposition 1’ we observe that increase in α increases
Dα(p(y|xi = 1)||p(y)) and decreases Dα(p(y|xi = 0)||p(y)) (lower-bounded by
0).

(9) ≈ p(xi = 1)Dα(p(y|xi = 1)||p(y)) + const. (10)

From ‘corollary 1’, increasing α shifts our focus to high p(y = 1|xi = 1). In other
words, increasing α results in the splitting feature having higher p(y = 1|xi = 1),
positive predictive value (PPV) or precision. On the other hand reducing α results
in lower Dα(p(y|xi = 1)||p(y)) and higher Dα(p(y|xi = 0)||p(y)). As a result,
reducing α gives higher p(y = 0|xi = 0), negative predictive value (NPV) for the
splitting features.

The effect of varying α appears clearly with an experiment using real datasets.
For each α value in the range of (0, 2), α-Tree was built based on ‘sick’ dataset
from UCI thyroid dataset. α-Trees were grown until ‘3rd level depth’, as fully-
grown trees deviate from the above property. Note that this analysis is based on
a single split, not on a fully grown tree. As the tree grows, a subset of data on
each node might not follow the imbalanced data assumption. Moreover, the per-
formance of a fully grown tree is affected by not only ‘α’, but also other heuristics
like ‘cut-off size’. 5-fold cross validation is used to measure each performance.
Averaged PPV and NPV over 5-cv are plotted in Figure 1.

(a) PPV vs. α (b) NPV vs. α

Fig. 1: Effect of varying α. Dotted lines are linearly regressed lines.



By varying the value of α we can control the selection of splitting features.
This is a crucial factor in increasing ‘diversity’ among decision trees. The greedy
nature of decision trees means that even a small change in α may result in a
substantially different tree.

Note that the above analysis is based on Taylor expansion of α-divergence
that holds true when p(y|xi) ≈ p(y), which is the case when datasets are imbal-
anced. This property may not hold if p(y|xi) differs a lot from p(y).

Connection to DKM and CART The family of α-divergence naturally in-
cludes C4.5’s splitting criterion. But the connection to DKM and CART is not
that obvious. To see the relation between α-divergence and the splitting func-
tions of DKM and CART, we extend the definition of α-divergence (equation
(6)) as follows:

Definition 2. Extended α-divergence is defined as EX [Dα(p(y|x)||q(y))] where
q(y) is any arbitrary probability distribution.

Definition 2 is defined by replacing p(y) with any arbitrary distribution q(y),
which serves as a reference distribution. The connection to DKM and CART is
summarized in the following two propositions:

Proposition 3. Given a binary classification problem, if α = 2 and q(y) =
( 1
2 ,

1
2 ) then the extended α-divergence splitting criterion gives the same splitting

feature as the Gini impurity criterion in CART. (Proof. See Appendix A.)

Proposition 4. Given a binary classification problem, if α = 1
2 and q(y) =

p(ȳ|x) then the extended α-divergence splitting criterion gives the same splitting
feature as the DKM criterion. (Proof. See Appendix A.)

CART implicitly assumes a balanced reference distribution while DKM adap-
tively changes its reference distribution for each feature. This explains why
CART generally performs poorly on imbalanced datasets and DKM provides
a more skew-insensitive decision tree.

4 Bootstrap Ensemble of α-Trees

In this section, we propose the algorithm for creating an ensemble of α-Trees.
The BEAT (Bootstrap Ensemble of Alpha Trees) algorithm for an ensemble
of k trees is illustrated in Algorithm 2. Observe that the parameters (a, b) for
Beta distribution and the number of trees are design choices. The parameters
(a, b) can be chosen using a validation set.

BEAT uses Bootstrapping when making its base classifiers. Like other Bag-
ging methods, BEAT exhibits better performance as the number of trees in
BEAT increases. The test errors of BEAT and Bagged-C4.5 (C4.5B) are shown
in Figure 2 (a). The experiment is performed based on ‘glass’ dataset from UCI
repository. The ‘headlamps’ class in the dataset is set as positive class, and the



Algorithm 2 Bootstrap Ensemble of α-Trees (BEAT)

Input: Training Data D (features X1, X2, ..., Xn and class Y ) and parameters (a, b).
for for i = 1 to k do

Sample α/2 ∼ Beta(a, b).
Sample Di from D with replacement (Bootstrapping).
Build an α-Tree Ci from Di using algorithm 1.

end for
for for each test record t ∈ T do
C∗(t) = Avg(C1(t), C2(t), ..., Ck(t))

end for

other classes are set as negative class (13.5% positive class ratio). 5 × 2 cross
validation is used. The performance of BEAT is comparable with C4.5B .

As the value of α affect the performance of α-Tree, the parameters (a, b),
which determine the distribution of α, change the performance of BEAT. Misclas-
sification rate generally doesn’t capture the performance on imbalanced datasets.
Although the misclassification rate of BEAT doesn’t vary much from C4.5B , the
improvement can be seen apparently in ‘precision’ and ‘recall’, which are crucial
when dealing with imbalanced datasets. This property is based on the obser-
vation in Section 3, but the exact relationship between the parameters and the
performance is usually data-dependent. Figure 2 (b) shows the averaged ‘f-score’
result based on the same ‘glass’ dataset. Unlike the error rate result, the f-scores
of BEAT and C4.5B show clear distinction. Moreover the resultant average ROC
curves of BEAT (Figure 2 (c), (d)) changed as the parameters (a, b) change. The
ability to capture different ROC curves allows great flexibility on choosing dif-
ferent decision thresholds.

Experimental Evaluation All the datasets used in this paper are from the
UCI Repository. Datasets with multiple classes are converted into 2-class prob-
lems. 5×2 cross validation instead of 10-fold cross validation is used due to highly
imbalanced data. Aside from the stated modifications each dataset is used “as
is”.

A comparative evaluation of BEAT with C4.5, C4.5B , and Balanced Random
Forest (BRF) [6], was performed. All trees are binary/fully grown and 30 base
trees are used. No prunning is applied, and for features having more than 2
categories, dummy coding scheme is used to build a binary tree. Table 1 reports
the average f-score over 5× 2 cross validation. For BRF, the number of random
attributes are fixed to 2 (m = 2). BRF generally needs more number of base
classifiers to perform stably.

5 Concluding Remarks

In this paper, we presented the BEAT approach incorporating a novel decision
criterion parametrized by α. Experimental results show that BEAT is stronger



(a) Error rate vs. Number of Trees (b) F-score vs. Number of Trees

(c) ROC curves (d) ROC curves

Fig. 2: Properties of BEAT. ROC curves are measured using 30 α-Trees.

and more robust for imbalanced data, compared to other tree based ensemble
methods.

Even though our algorithm gives consistent results for various cases, a joint
optimization hasn’t been achieved yet with respect to the parameters (a, b) and
the number of trees. Moreover, the extended α-divergence criterion needs to be
further investigated as well.
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A CART, DKM and α-Divergence

Gini Assume a binary classification problem, y ∈ {0, 1} and binary feature
x ∈ {0, 1}. Since for choosing a best feature x the distribution of y is fixed, we
can derive the following equation:

Gini =
∑
y

p(y)(1− p(y))−
∑
x

p(x)
∑
y

p(y|x)(1− p(y|x)). (11)

= EX [
1

2
−
∑
y

p(y|x)(1− p(y|x))] + const (12)

∝ EX [D2(p(y|x)||q(y))] (13)

where q(y) = (1
2 ,

1
2 ). Equation (13) follows from equation (4). Linear relation

between the Gini splitting formula and α-divergence completes the proof.

DKM Assuming the similar settings as in Appendix A, the splitting criterion
function of DKM is:

DKM =
∏
y

√
p(y)−

∏
x

p(x)
∏
y

√
p(y|x) (14)

= EX [
1

2
−

∏
y

√
p(y|x)] + const (15)

∝ EX [D 1
2
(p(y|x)||q(y))] (16)

where q(y) = p(ȳ|x). Equation (16) follows from equation (2). Linear relation
between the DKM formula and α-divergence completes the proof.


