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ABSTRACT
Pairwise interaction networks capture inter-user dependen-
cies (e.g. social networks) and inter-item dependencies (e.g
item categories) that provide insight into user and item be-
havior. It is often assumed that such interaction information
is informative for preference prediction. This may not be the
case, as the some of the observed interactions may not be
correlated with the preferences, and their use may negatively
impact performance by introducing undesired noise.

We propose an approach for weighting each interaction,
such that we can determine the importance of each inter-
action to the preference prediction task. We model the
preferences using kernel matrix factorization; where the ker-
nels capture the weighted effects of the interactions. Our
approach is validated on Last.fm and Movielens datasets;
which include multiple sources of explicit and implicit inter-
user and inter-item interactions. Our experiments suggest
that learning the most important interactions can improve
recommendation performance when compared to the stan-
dard matrix factorization approach.

1. INTRODUCTION
Consumers now expect certain information sources, such

as news from Google1, product recommendations from Ama-
zon2 and music recommendations from Last.fm3 to be per-
sonalized to their unique tastes. One of the reasons for this
phenomenon is the incredible growth of options available to
the consumer. A recommender system becomes an informa-
tion filter that helps the user to navigate the overwhelming
breadth of choices. Recommender systems may also be used
for targeted advertising and other personalized services.

There are several approaches to preference recommenda-
tion in practice [2]. Matrix factorization based models [11,

1news.google.com
2www.amazon.com
3www.lastfm.com
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16] assume that the observed ratings may be explained by
a small number of user and item factors. The user-item
ratings are represented as a sparse matrix, and the model
learns a low rank factorization that explains the data. In
contrast, models such as SCOAL [6] also utilize available
features. SCOAL decomposes the user-item matrix into co-
clusters, and uses the features to learn local models for each
co-cluster. The co-clusters recovered represent groups of
users that are correlated in their preferences for clusters of
related items.

The observation that social networks may influence user
preferences is the basis for several recommender system mod-
els. Memory based systems predict user preferences by tra-
versing the user graph [7], or the combined user/item graph
[8]. The predicted user-item preference score is a weighted
sum of the preferences of close neighbors on the same item
(or closely related items). The weights are estimated using
the length of the walk, the strength of the links, and the
item similarities. Social networks may also be integrated
with matrix factorization models. Ma et al. [13] jointly fac-
torize the ratings matrix and the social network, with the
constraint that both factorizations use the same user factors.
A related approach [9] uses the graph to regularize on the
user factors; so that the predicted factors vary smoothly over
the social graph. One notable feature of these models is that
they require the user to select special parameters that tune
the effect of the social network. In contrast, our proposed
model can automatically compute weights that parametrize
this effect, avoiding potentially expensive cross validation.

Despite the focus on social networks, the interaction in-
formation available is often much richer. Users may interact
in different contexts; such as in professional networks and in
family relationships. In addition, the user may provide both
implicit and explicit feedback of their preferences [10]. For
example, the Last.fm dataset4 includes explicit feedback of
user-artist preferences, as represented by listening counts,
but also contains tag information; representing the user ac-
tion of tagging artists. Users that tag the same artists are
likely to share musical tastes, so the action of tagging may be
interpreted as an implicit indicator of user similarity with re-
spect to artist preferences. Item similarity may be described
in a similar manner. For example, movies that are tagged
by the same set of users are similar with respect to the ob-
served user tags. In addition to tag information, items are
often described by categories. These categories may specify
similarity based on expert opinions, or the collected opinions

4http://ir.ii.uam.es/hetrec2011/datasets/lastfm/readme.txt
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of a user community. In the case of movies, the categories
may include directors, actors and genres.

The interactions explain the correlations between the users
and between the items. In turn, some of these interactions
may be correlated with the user-item preferences, while oth-
ers may be irrelevant. Ad-hoc methods of combining these
interactions; such as averaging or hand tuning a weighted
combination, are tedious and clearly sub-optimal. The use
of irrelevant interactions may also introduce noise that may
degrade prediction performance. In this paper, we propose
an approach for learning recommendations using several het-
erogeneous data sources, each of which define pair-wise inter-
actions. We will represent each of these interaction networks
as graphs. We then represent each graph using a spectral
decomposition. Our model learns weights for each of these
sources based on their relevance to the prediction task.

Outline: We begin our discussion in section 2 by moti-
vating the spectral representation, and discuss some relevant
properties. We then review the matrix factorization model
for recommender systems; generalized to use feature infor-
mation (section 3). The high dimensionality of the space will
motivate a kernelized matrix factorization approach; which
we discuss in section 4. We will augment this model with
a sparsity inducing regularizer for learning the most impor-
tant interactions in section 4.1. In section 5, we propose an
algorithm for estimating the model parameters, then we de-
scribe our experiments and results in section 6. We conclude
in section 7 and include possible directions for future work.

Notation: xi,j denotes the (i, j)th entry of the matrix
X. xi,: denotes the ith row of X and x:,j denotes the jth

column. Let Ω denote the index set (i, j) of observed entries
in a matrix X, with the number of observed entries, |Ω| = K.
We denote the partially observed matrix by XΩ with the
un-observed entries set to 0. We also define the operation
vecΩ (X) that transforms a M ×N matrix X into a vector y
of size K×1 by stacking the columns and ignoring the entries
{(i, j) |(i, j) /∈ Ω}. In the special case where K = M×N , we
will instead use the vec(·) operator which stacks the columns
of a M ×N matrix X into a vector x of size (M ×N)× 1.
The Kronecker product is denoted by ⊗.

2. INTERACTION GRAPHS AND FEATURE
EXTRACTION

An interaction network is a description of the relationship
between a group of entities. For example, a social network
is an interaction network between users with links given by
the social ties. A compact way of formally characterizing
an interaction network is a graph5 G = (V, E ,A), where
V = {vi} represents the set of entities as vertices, E = {ei,j}
represents the set of links between the entities vi and vj , and
the adjacency matrix A with entries {ai,j} representing the
strength of these links. In a social network, the edges ei,j
may indicate a relationship between two people, and the
adjacency ai,j may represent the strength of those social

5Though we will focus on graphs directly induced by inter-
actions, we may describe feature variables using a similar
approach. Given two points xi and xj , and a distance mea-
sure d(xi, xj), a graph can be defined by connecting any
nodes with d(xi, xj) < ε by an edge with weight inversely
proportional to any monotonic function of their inter-point
distance. Such derived graphs are used in semi-supervised
learning, and have close connections to learning the manifold
of a set of data points [4].

ties. Without loss of generality, we will assume that all
the weights ai,j > 0. Further, we will focus on interactions
where the links are symmetric i.e. ai,j = aj,i. The extension
to non-symmetric links is left for future work.

We will be concerned with functions on the nodes of this
network given by some f : vi 7→ R. These functions, may
describe, for example, the degree to which each person in
a network enjoys classical music, or enjoys action movies.
Here we make a modeling assumption; that the value of
the function is correlated with the relationship between the
entities. One way to constrain f to be correlated with the
graph G is to enforce smoothness with respect to the graph.
To achieve this, we will seek functions such that the average
weighted square difference between function evaluations at
adjacent vertices is small. In other words,

|V|∑
i,j=1

ai,j(f(vi)− f(vj))
2 < C,

where C is some user defined constant. If we organize the
function values into a vector f ∈ R|V|, so that f i = f(vi),
one can show that this is equivalent to the constraint:

2f>Lf < C,

where L is the the graph Laplacian matrix of size |V| × |V|.
The Laplacian matrix can be computed as L = D − A,
where A is the graph adjacency matrix and D is a |V| × |V|
diagonal matrix with di,i =

∑
j ai,j . We may also define a

normalized smoothness penalty:

|V|∑
i,j=1

ai,j

(
f(vi)√
di,i
− f(vj)√

dj,j

)2

< C,

where the function values are are normalized by the weight
densities at the vertices. This smoothness penalty is equiv-
alent to constraint:

2f>L̃f < C,

using the Normalized Laplacian L̃ = D−
1
2 LD−

1
2 = I −

D−
1
2 AD−

1
2 . Several properties of these matrices are well

understood [12, 19]. Both L and L̃ are symmetric posi-

tive definite matrices. The eigenvalues of L̃ are bounded as
0 ≤ λi ≤ 2. The smallest eigenvalue of both graph Lapla-
cians is 0, and the number of zero eigenvalues corresponds
to the number of connected components in the graph. We
note that these graph Laplacians can be used to generate an
entire family of smoothness inducing penalties [19].

The eigenvectors of the graph Laplacians form an orthonor-
mal basis for all smooth functions on the graph i.e. func-
tions evaluated at the vertices. Therefore, any function that
is smooth with respect to the graph may be represented at
the node vertices as:

f(vi) =
∑
j

wjηj(vi).

Thus, the problem of learning a smooth function on the
graph is reduced to learning the weight vectors wj . This ba-
sis can be arranged in order of smoothness; with eigenvector
of the smallest eigenvalue corresponding to the smoothest
function, and larger eigenvalues corresponding to rougher
functions. The eigenvectors corresponding to the D small-
est eigenvalues contain most of the smoothness information
we are interested in capturing. Therefore, for computational
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reasons, we will restrict our basis to the D smallest eigen-
vectors of the Laplacian matrix.

3. MATRIX FACTORIZATION
The goal of matrix factorization(MF) is to decompose the

observed preferences into hidden user and item factors [11,
16]. In a movie recommendation application, the user factors
may define a particular user’s preference for action movies,
exotic locations, and so on. In turn, the corresponding di-
mensions in the movie factor may define an action score,
an exotic location score and other relevant metrics. The
inner product between these factors defines the user-movie
preference score as a measure of the alignment between the
user interests and the movie characteristics. We note that
these factors are not predefined, and must be learned by the
model. In practice, the recovered factors are often abstract
and are difficult to interpret directly.

We assume that there is an available training set of N ob-
servations {(i, j) ∈ Ω}, where zi,j be the observed preference
of the ith user for the jth item. Let xi ∈ RDx be the feature
vector for each user i, and yj ∈ RDy for each item j. We
can combine both features to define a feature vector for the
(i, j)th example. In this paper, we will use the Kronecker
product as a combiner i.e. we define the (i, j)th feature vec-
tor as xi ⊗ yj ∈ RDx×Dy . We will use a linear predictor;
which involves estimating a parameter vector w ∈ RDx×Dy

so the resulting predictions are:

ẑi,j = w>(xi ⊗ yj)

= x>i Wyj . (1)

where w = vec(W). The result (1) follows by an application
of the standard Kronecker identity.

In the high dimensional setting, the parameter space of
W ∈ RDx×Dy may be too large to learn an accurate model,
so we will restrict the space of parameters by enforcing some
maximum rank R. Now W may be parametrized using a
factorized form W = UV> where U ∈ RDx×R and V ∈
RDy×R. The prediction is now computed as:

ẑi,j = x>i UV>yj , (2)

with the user factors given by the linear term x>i U and the
item factors given by y>i V.

Standard matrix factorization [11, 16] is a special case of
this model where the user (resp. item) features are categori-
cal, specifying a unique identifier for each user (resp. item).
Without loss of generality, we may represent user i using
the feature xi = ei ∈ RNx where ei is the ith standard basis
vector, with 1 at the ith dimension, and 0 elsewhere. Sim-
ilarly, item j is represented by the feature yj = ej ∈ RNy .
In matrix form, the predicted matrix is given by the model,

Ẑ = (IU)(VI)> = UV>. Note that in standard matrix
factorization, the linear model in (1) without the low rank
constraint severely overfits the data and the low rank con-
straint is critical for any generalization. In fact, if we use the
squared loss function as our error measure, the least square
estimate of the weight vector predicts the training data ex-
actly as ẑi,j = wi,j = zi,j for every (i, j) ∈ Ω and predicts
ẑi,j = 0 everywhere else.

The basis vectors ei are also a basis for functions on
the graph G, but they do not enforce smoothness, as each
vertex is not constrained in its interaction with its neigh-
bors. To include the smoothness effect, we will augment

the identity features with the graph eigenvector features de-
scribed in section 2. Given some graph Gx over the users
and Gy over the items, we will extract the eigenvectors of
the respective graph Laplacian matrices to compute new
features ηx ∈ RNx×Dx and ηy ∈ RNy×Dy . The new fea-

tures are given by concatenation xi
> = [ ei

>,ηx(i)>] ∈
R1×(Nx+Dx) and yj

> = [ ej
>,ηy(j)>] ∈ R1×(Ny+Dy) re-

spectively. Further, given different graphs from several user
interaction networks {Gkx} and several item interaction net-
works {Gly}, we can create a feature space representation us-

ing the same procedure, with feature vectors given by xi
> =

[ei
>,η1

x(i)
>
, · · · ,ηK

x (i)
>

] ∈ R1×(Nx+
∑

k Dk
x) for the user side

and yj
> = [ ej

>,η1
y(j)

>
, · · · ,ηL

y (j)
>

] ∈ R1×(Ny+
∑

l D
l
y) for

the items. The result is a function that is smooth with re-
spect to all the interaction graphs simultaneously. As we
continue to include more interaction networks, the dimen-
sion of this space can grow very large. In such problems,
where D � N , we may obtain a more efficient representa-
tion by using kernel functions.

4. KERNEL MATRIX FACTORIZATION
We will now extend our representation to functions in a

reproducing kernel Hilbert space f(x, y) ∈ F . Linear func-
tions in F are given by given by f(x, y) = w>φ(x, y), us-
ing basis functions φ(·) ∈ F . Defining the function using
this basis function representation may be unwieldy, when,
for example φ(·) is an infinite dimensional representation.
Instead, we will define a kernel function s((x, y), (x̂, ŷ)) =
〈φ(x, y),φ(x̂, ŷ)〉 [17] so that functions may be evaluated
as f(x, y) =

∑∞
n=1 mns((x, y), (xn, yn)). The kernel func-

tion measures the pair-wise similarity between examples and
must be positive semi-definite. Given some convex loss func-
tion L(zn, f(xn, yn)), and the induced norm ‖f‖2F = 〈f, f〉,
the function that minimizes the regularized cost is given by
f(x, y) =

∑N
n=1 mns((x, y), (xn, yn)). In this way, the infi-

nite dimensional optimization over the function space F is
converted to a tractable finite dimensional optimization over
the set of parameters {mn}.

Let the space of functions over the users U be defined
by some kernel k(·, ·), and the space of functions over the
items V be defined by g(·, ·). We will define functions in
the Hilbert product space F = U × V using the product
kernel s((x, y), (x̂, ŷ)) = k(x, x̂)g(y, ŷ). The kernel model
suffers from a similar explosion in dimensionality as the lin-
ear model we described in (1), and we will again enforce a
rank constraint. The kernel function with rank(f) < R can

be represented using the sum f =
∑R

r=1 fr, where fr are
rank one functions6. We will regularize the space using the
pseudo-norm ‖f‖2F = ‖U‖2HK

+ ‖V‖2HG
. The proof that

this function space satisfies the representer theorem follows
directly from [1, 17] and is omitted7. Each rank one function

6The rank R of a function f ∈ F is defined as the minimum
number of rank one atomic terms fr that can be used to
define f [1, Appendix A]. If R does not exist, then rank(f) =
∞.
7As in the matrix case [15], the pseudo-norm using the fac-
tors is closely related to nuclear norm of the kernel func-
tion[1]; often used as a heuristic for rank minimization.

‖f‖∗ = inf
f=

∑∞
r=1 ur⊗vr

1
2

∑∞
r=1

(
‖ur‖2HK

+ ‖vr‖2HG

)
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fr is given by:

fr(x, y) =

∞∑
i=1

k(x, xi)α
i
r

∞∑
j=1

g(y, yj)β
j
r .

We now apply the representer theorem [17] to compute
the predictions as:

ẑi,j = kiαβ
>gj (3)

where α ∈ RNu×R, β ∈ RNm×R, ki(l) = k(xi, xl) and
gj(l) = k(yj , yl). For comparison with matrix factorization,
let ui = kiα ∈ RR and vj = gjβ ∈ RR, then the predicted
function can be written in the familiar form; ẑi,j = u>i vj .
The kernel values for users and items not in the training
set may be estimated using the Nyström approximation [5].
This is especially relevant when the number of users or items
is large, and the cost of repeated eigen-decompositions is
prohibitive.

4.1 Sparse Kernel weights
Our goal is to develop a model that can learn the im-

portance of each interaction. For this reason, we will de-
compose the kernel representation into separate sub-kernels;
each capturing a different basis extracted from the graphs.
First, we note that if k(i, j) = 〈φ(i),φ(j)〉 is the kernel
corresponding to some feature space φ(·), then the concate-

nated feature space φ(·)> = [ φ0(·)>,φ1(·)>] has the ker-
nel space representation k(i, j) = k0(i, j) + k1(i, j) where
k0(i, j) = 〈φ0(i),φ0(j)〉 and k1(i, j) = 〈φ1(i),φ1(j)〉.

Let xi
> = [ ei

>,η1
x(i)

>
, · · · ,ηK

x (i)
>

] as discussed in sec-
tion 3. We may concatenate these row vectors into X ∈
RNx×(Nx+

∑
k Dk

x) such that Xi,: = xi
>. We define the map

π : p 7→ (Gk, d) so that p corresponds to the dth eigenvec-
tors of the kth graph. Now we can decompose the kernels
as K =

∑P
p=0 Kp. K0 = I captures the self-correlation at

each vertex which is independent of all other nodes. The
other kernels are computed as Kp = X:,Nx+pX:,Nx+p

> for
p > 0. The eigen-kernel Kp for p > 0 captures the eigen-
vector feature ηk

x,d (using the map π(p) = (Gk, d)). The
same approach may be applied to define item kernels where

Yi,: = yi
> and Y ∈ RNy×(Ny+

∑
l D

l
y). Now G =

∑Q
q=0 Gq

where G0 = I and Gq = Y:,Ny+qY:,Ny+q
> for q > 0.

The sub-kernels Kp and Gq induced by the eigenvectors
can be interpreted as sub-correlations between the node ver-
tices. Such correlations capture local smoothness between
the graph vertices based on the inter-user and inter-item in-
teractions. This smoothness is closely related to local clus-
tering in the graph nodes; as a smooth function will be al-
most constant over connected clusters.

We now introduce kernel weights ap and bq to parametrize
the influence of each sub-kernel, so that:

K =

P∑
p=1

apKp and G =

Q∑
q=1

aqGq.

These weights are constrained to lie in the simplex {ap ≥
0,
∑

p ap = 1} and {bq ≥ 0,
∑

q bq = 1}. The simplex con-
straint is closely related to a lasso penalty, as the contours
of this set encourage sparsity. These weights may also be in-
terpreted as probabilities. The kernels must be normalized
in order to recover meaningful solutions. We will normalize
all kernels to unit trace. Learning a sparse combination of
kernels is closely related to multiple kernel learning[14], so

our model may be interpreted as a combination of multiple
kernel learning with kernel matrix factorization.

The weights separate the model into interpretable fac-
tors; based on the different interaction effects between the
graph kernels on the predicted ratings. We may compute

the prediction for the entire matrix as Ẑ = Kαβ>G; de-
composed as

∑P
p=1

∑Q
q=1 apbqKpαβ

>Gq. The learned fac-
tors can be expressed as a weighted linear combination of
a collaborative filtering term: a0b0αβ

> which captures self
correlations not explained by the features, interaction be-
tween the user ratings and item kernels,

∑Q
q=1 a0bqαβ

>Gq,
interaction between the item entries and the user kernels,∑P

p=1 apb0Kpαβ
>, and the pair-wise interaction between

the different user kernels and item kernels, apbqKpαβ
>Gq

for p > 0 and q > 0.
Related Work: We have limited our discussion to the

use of symmetric graphs. In contrast, regularization based
matrix factorization models such as [9] may not require this
symmetry. If the graph is symmetric and only the user social
network graph is used, the model in [9] may be recovered us-
ing the equivalence between regularization and kernels [19].
Our model may then be seen as as extension of [9] with
multiple inter-user and inter-item interactions. The idea of
using the graph eigenvectors as features for was explored in
[18] to improve classification performance. Argyriou et al.
[3] explored the use of multiple kernel techniques to learn a
sum of Laplacian kernels. In contrast, we model the kernel
sparsity at the more granular eigenvector level.

5. PARAMETER ESTIMATION
We measure model error using the least squares loss; com-

puted as l(zi, f(xi, yi)) = (zi− f(xi, yi))
2. This is combined

with the kernel regularizer to define the regularized cost:

C =
1

2

∥∥∥[Kαβ>G− Z
]

Ω

∥∥∥2

F
+
λ

2

(
tr(α>Kα) + tr(β>Gβ)

)
(4)

We will use the representations U = Kα and V = Gβ
as appropriate to simplify the notation. The cost function
in terms of the entire set of parameters {α,β,a,b} is non-
convex. However, if all but one of the parameters is fixed,
the cost function in terms of the free parameter becomes
convex, and in fact, each sub-optimization problem reduces
to a system of linear equations. This motivates a simple co-
ordinate descent algorithm to find a local minimum of the
cost.

We begin by learning the user factor variable α. If β, a
and b are fixed, we may estimate α by solving the following
regularized least squares problem:

1

2

∥∥∥[KαV> − Z
]

Ω

∥∥∥2

F
+
λ

2
tr(α>Kα) (5)

where tr(M) denotes the trace of some matrix M. The
gradient is given by:

∂C

∂α
= KEV + λKα

where the sparse error matrix E =
[
Kαβ> − Z

]
Ω

. Simi-
larly, when α, a and b are fixed, we may learn the item
factor β by solving:

1

2

∥∥∥[GβU> − Z>
]

Ω

∥∥∥2

F
+
λ

2
tr(β>Gβ) (6)
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Algorithm 1 Co-ordinate Descent Solver

1: initialize α, β, a and b
2: repeat
3: Compute a∗ by solving (7)
4: Compute α∗ by solving (5)
5: repeat . Optional inner loop
6: re-compute a∗ by solving (7)
7: re-compute α∗ by solving (5)
8: until Converged
9: Compute b∗ by solving (8)

10: Compute β∗ by solving (6)
11: repeat . Optional inner loop
12: re-compute b∗ by solving (8)
13: re-compute β∗ by solving (6)
14: until Converged
15: until Converged
16: return α∗, β∗, a∗ and b∗

with the gradient given by:

∂C

∂β
= GE>U + λGβ

We solve the linear systems for α and β using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm. Note that,
as in most matrix factorization models, the point (α,β) =
(0,0) is a local minimum of (4), and so α and β must be
initialized to non-zero values. We initialized α and β using
random values.

The solution for kernel weight parameters once again cor-
responds to a quadratic problem, but now with convex con-
straints. Let z = vecΩ (Z) and S:,p = vecΩ

(
KpαV

>) i.e the
predicted function learned using only one of the user kernels,
so S ∈ RN×(P+1). Let the individual function norms be
given by np = tr(αKpα). With α, β and b fixed, the cost
function with respect to a is the regularized least squares
problem:

1

2
‖z− Sa‖22 +

λ

2
n>a (7)

s.t. ap ≥ 0,

P∑
p=0

ap = 1

Similarly, define T:,q = vecΩ

(
GqβU

>) and mq = tr(βGqβ).
If we fix α, β and a, the cost for b may be computed as:

1

2
‖z−Tb‖22 +

λ

2
m>b (8)

s.t. bq ≥ 0,

Q∑
q=0

bq = 1

We solve for a and b using a constrained quadratic problem
solver. a and b are initialized as uniform vectors ai = 1/(P+
1) and bj = 1/(Q+ 1).

6. EXPERIMENTS
We tested our model using the Last.fm and the Movielens

datasets8. The data is pre-processed by removing global
bias effects; computed using an un-regularized global linear
model. All models are trained on the residual of the global
model. We compared the weighted interaction model

8http://www.grouplens.org/node/462

to matrix factorization (MF) and the uniform kernel
using uniform weights ap = 1/(P+1) and all bq = 1/(Q+1).
Note that standard matrix factorization is a special case of
our model where ap = 1 if p = 0 and ap = 0 otherwise, and,
bq = 1 if q = 0 and bq = 0 otherwise. We experimented
with rank 5 and rank 10 factorization models, and present
results on both. Our model includes a single regularization
parameter λ. We selected λ from the set {10−5, 10−4, 5 ×
10−4, 10−3, 5 × 10−3}. We did not implement the optional
inner loop in Algorithm 1 (lines 5 and 11).

We used the normalized Laplacian as our graph represen-
tation. Several of our graphs are generated using implicit in-
teractions. For example, the pair-wise user similarity graph
based on shared tags is extracted from the the user-item tag
graph. This symmetry leads to some redundancy that we
may exploit to reduce the computational overhead of com-
puting the spectral representation. Let M be the adjacency
matrix of the implicit graph. Then the interaction is de-
scribed by the adjacency matrix A = MM>. Fortunately,
the symmetric graph Laplacian shares the same eigenvector
space as the the weighted adjacency matrix. In other words,

the eigenvectors of L̃ = I − D−
1
2 MM′D

1
2 are identical to

the left singular values of D−
1
2 M, with eigenvalues given

by 1 − σ2
i ; where σi are the singular of D−

1
2 M. Using this

identity, we may avoid computing the these interactions ex-
plicitly, and avoid the factorization of a potentially large and
dense graph.

6.1 Last.fm
The Last.fm task involves predicting the artist listening

preferences of users. The information available in the dataset
includes a social network between users and a set of user-
artist tags. There are Nx = 1982 users and Ny = 17632
items, with N = 92834 user-listened artist counts. This re-
sults in a user-artist matrix with a density of 0.28%. Our
hypothesis is that the number of times the user listens to
an artist is an indicator of user preference. Fig. 1 shows
the histogram of raw user counts with the probabilities on a
log scale. Observe that the data is skewed with a long tail.
We log-transformed the counts of user listen counts. Figure
Fig. 2 shows the count distribution after log transformation.
The data distribution is now closer to a Gaussian. Our re-
sults are reported using the log rescaled data as the target.

The user social network contains 25434 bi-directional links
and 20 connected components. We extracted the first 50
eigenvalues of the normalized Laplacian to describe the so-
cial network. We also extracted the user-tag artist network.
We ignored the tag counts and preserved only the pres-
ence/absence of a tag. We extracted the first 100 eigenvec-
tors of the user-user tag graph, and the first 100 eigenvectors
of the item-item tag graph. In all we extracted P − 1 = 150
user eigen-features and Q−1 = 100 item eigen-features. The
presence or absence of a user-artist tag, and a constant bias
term were used to learn the initial global model.

We randomly divided the observed preferences into five
sets, and present the 5-fold cross validation performance us-
ing root mean square error (RMSE) metric (see Table 6.1).
The RMSE of the global model was comparable with the
overall variance, suggesting that the global features were
not informative. The uniform model performed only slightly
better than the global model. Suggesting that the noise
in the direct average overwhelmed the useful signals. Our
model, which learns the weights of the interactions, out-
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Figure 1: Histogram of raw listen counts in Last.fm
µ = 745.24, σ = 3751.30.
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Figure 2: Histogram of log transformed listen counts
in Last.fm µ = 5.469, σ = 1.531.

performed plain matrix factorization. We observed that the
rank 10 model slightly underperformed the rank 5 model;
suggesting that the true rank is less than 10, and the rank
10 model may be over-fitting.

The models we learned were very sparse in the eigenba-
sis. In most of the runs, over 90% of the user kernel weights
and the item kernel weights were zeros. We extracted the
learned vectors and analyzed which of the features were most
strongly correlated with the prediction. Fig. 3 and Fig. 4
show a representative result from the algorithm. The first
eigen-kernel was selected as the most important user feature,
and self-correlation was selected as the most important item
feature. On the user side, less than 1% of the weight was as-
signed to the self-correlation, 93% of the weight was assigned
to the social network, and 6% of the weight was assigned to
the tag-based user similarity. On the item side, 77% of the
weight was was assigned to self-correlation, and the item tag
interactions cumulatively contributed 23% of the weight.

Rank=5 rank=10

Global Model 1.502 (0.014) -
Uniform Interaction 1.492 (0.015) 1.498 (0.008)

MF 1.139 (0.006) 1.173 (0.010)
Weighted Interaction 1.071 (0.009) 1.106 (0.006)

Table 1: Average (std.) cross validation RMSE on
Last.fm

6.2 Movielens
The Movielens dataset contains user ratings expressing

preferences for different movies. The dataset contains N =
855598 ratings. The meta-data available include user-movie
tag information, movie genres, movie directors, country as-
signments, and aggregate statistics of audience and critics
ratings on the review site, rotten tomatoes9. The movie
data file contains 10197 movies; some of which had no user
ratings. We extracted the subset of Ny = 10109 movies
that had been rated by the Nx = 2113 users. The resulting
matrix density was 4%. The ratings are one of 10 distinct
values ranging from 0.5 to 5.0 in increments of 0.5. As we
show in Fig. 5, about half of the ratings are 4. The mean of
the ratings is 3.4379 with a standard deviation of 1.0025.

We used the presence or absence of a tag as a global
feature value. We also used the aggregate movie rating
statistics provided, such as average critics rating and av-
erage community rating of each movie; a total of 13 values
per movie. This set was repeated as appropriate to define
global features used in the global linear bias model. The
user-movie tag matrix was used to extract 100 inter-user
and 100 inter-movie graph features. In addition, we also ex-
tracted 100 inter-movie interaction features using the movie-
actor and movie-director graphs. Finally, we extracted 20
graph features from the movie-genre graph. We used a total
of P = 101 user and Q = 321 movie kernels.

Rank=5 rank=10

Global Model 0.9478 (0.0018) -
Uniform Interaction 0.9471 (0.018) .9481 (0.0025)

MF 0.7749 (0.0023) .7706 (0.0016)
Weighted Interaction 0.7742 (0.0024) .7691 (0.001)

Table 2: Average (std.) cross validation RMSE on
Movielens

We report performance using the 5-fold validation. As
shown in Table 6.2, the weighted interaction model out-
performed matrix factorization. We found that the model
assigned the over 96% of the user weight to the self-correlation
kernel (Fig. 6), and less than 4% to the user-tag interactions.
Similarly, 98% of the item kernel weight was assigned to the
item self-correlation kernel (Fig. 7). Therefore, the resulting
model was only slightly different from the matrix factoriza-
tion result. There may be several reasons for this, the most
likely reason is that the graphs available are not sufficiently
(linearly) correlated with ratings values. In addition, the
data is relatively dense, meaning that the information in
the ratings history may be sufficient to explain most of the

9http://www.rottentomatoes.com
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Figure 3: Last.fm user kernel log(weight).
Identity(1%), User social network (93%), Tags (6%)
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Figure 4: Last.fm item kernel log(weight).
Identity(77%), Tags (23%)

observations. In either case, these results suggest that our
model achieved our stated goal of automatically discarding
un-correlated interactions.

We also tested the model on a time based split of the
data as shown in Table 6.2. We sorted the ratings by time,
then we extracted the first 90% of the ratings as training
data, and predicted performance on the last 10%. We ob-
served that though the performance of both the MF and the
weighted interaction models degraded, learning the interac-
tion still out-performed matrix factorization.

7. CONCLUSION AND FUTURE WORK
We have presented a recommender system that is tailored

to the task of extracting information from pair-wise inter-
action networks. The results of our model indicate which
interactions are most correlated with the recommendation.
We showed that our model is robust and degenerates to the
matrix factorization model when no relevant interactions are
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Figure 5: Movielens rating distribution µ =
3.4379, σ = 1.0025.

rank=5

Global Model .9185
Uniform Interaction .9184

MF .8790
Weighted Interaction .8728

Table 3: Global time split test RMSE on Movielens

found.
We currently use standard techniques for learning the

model parameters. One topic for future work is to inves-
tigate more efficient specialized approaches to solving the
problem. We are also interested in additional validation on
rich datasets with several sources of pair-wise interactions.
The robustness of our model to cold start ratings can also be
explored in more detail. In particular, we are interested in
how the Nyström approximation for estimating the kernels
values for new users and items will affect the performance
of our model.
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