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ABSTRACT
Supervised learners can be used to automatically classify
many types of spatially distributed data. For example, land
cover classification by hyperspectral image data analysis is
an important remote sensing task where a supervised learner
is trained on a large set of labeled data. However, while
gathering unlabeled samples may be relatively easy, labeling
large amounts of data can be very costly. Acting learning is
one approach to reduce the amount of labeled data required to
build a supervised learner that performs well. However, most
active learning approaches assume that the cost of acquiring
labels for all points is uniform. For spatially distributeddata
that requires physical access to spatial locations in orderto
assign labels, label acquisition costs become proportional to
distance traveled in order to label a point. In this paper, we
present results for applying a novel active learning method
which takes variable label acquisition costs into account on
two hyperspectral datasets.

Index Terms— hyperspectral data, remote sensing, clas-
sification, active learning, spatial information

1. INTRODUCTION

Supervised machine learning techniques can be used to clas-
sify various forms of spatially distributed data. However,su-
pervised techniques rely on large amounts of labeled data in
order to build accurate models. While the data itself may be
comparatively easy to gather, labeling this data is often dif-
ficult and costly. For example, in [1], the authors state that
labeling a single training sample is approximately 500 U.S.
dollars for forestry applications. One machine learning tech-
nique to reduce the amount of labeled data required to build
a supervised model is active learning. In active learning, one
attempts to reduce the number of labeled training points re-
quired for a certain level of classifier performance by allow-
ing the active learning algorithm itself to choose which points
should be labeled.

Most active learners assume that: 1) the cost of acquiring
the label for a particular point is independent of the costs for
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all other points and that 2) label acquisition costs are equal.
When labeling spatially distributed data, both of these as-
sumptions may be false. For example, for classification of
land-cover using hyperspectral data, acquiring labels mayin-
volve traveling to a particular location and performing some
sort of test such as determining land type or collecting vari-
ous samples (e.g., soil, water, foliage) that requires physical
access. Traveling to this point incurs some type of cost (e.g.,
gas or time) proportional to distance traveled. The distance
traveled also depends on the order in which one labels the
points.

In this paper, we present a novel framework for perform-
ing active learning while taking into account spatially sensi-
tive labeling costs. In particular, we pose the problem as a
traveling salesman problem with profits. We present example
results using hyperspectral data, but the presented approach is
also applicable to other spatially distributed data where super-
vised learning is used. The algorithms presented in this paper
were previously introduced in [2] and [3]. In this paper, we
focus mainly on experimental results.

Related works: Although many active learning strategies
have been proposed during the last 15 years (see [4] for a
recent survey), there exist few algorithms that consider spa-
tial characteristics of unlabeled samples. In [5], the authors
proposed an active learning algorithm for hyperspectral data
that adapts a classifier for spatial variation of spectral sig-
natures. However, it does not take into account any form
of varying label acquisition costs based on spatial data. An
active learning algorithm to efficiently model spatial phe-
nomena with Gaussian processes has been proposed [6], but
the algorithm is used to model spatially varying quantities
and is not applicable to classification problems. Aside from
our own work, we are unaware of any active learning stud-
ies which take spatially dependent label acquisition costs
into account. However, both [7] and [8] present methods
for incorporating non-spatial label acquisition costs with ac-
tive learning for natural language processing tasks; one can
show that the method we present below called “US/TSPP” is
mathematically related.



2. ACTIVE LEARNING WITH SPATIAL COSTS

Problem setting: In this paper, we adapt a pool-based active
learning technique called uncertainty sampling [9] for han-
dling spatially related label acquisition costs. As in “stan-
dard” active learning, active learning on spatial data occurs
in an iterative fashion where, on each iterationi, points from
some unlabeled setU are selected by the active learner based
on some criteria, labeled by some oracle, and then placed in
the labeled setL. The labeler starts and ends each iteration at
some “home location”1. On each iteration, the labeler labels
points inU until some traveling budget is expended, where the
traveling budget is the amount of time available for traveling
and labeling per iteration.

We will use the following notation. On theith iteration,
the algorithm selectsni points for labeling whereni depends
on some traveling budget which we will denote astmax. The
actual cost of traveling and labeling points for theith itera-
tion will be denoted asti. ti depends on the total distancedi

traveled on theith iteration, the speeds of the labeler’s vehi-
cle, the cost of labeling a single pointcl, and the number of
points labeledni. In particular,ti = (di/s) + (cl ∗ ni) and
the constraint is thatti < tmax. We will measureti, tmax,
andcl in units of time,di in units of length, ands in units of
length/time. Finally, we will denote the uncertainty score(as
determined by uncertainty sampling) for thejth point inU as
u(j).
Solutions: A simple baseline is to start at home and continue
labeling the next closest unlabeled point whileti < tmax.
We will call this baseline the “closest next” baseline. A sec-
ond baseline is to pick points via the non-spatial, “traditional”
machine learning methods of random sampling and uncer-
tainty sampling. Then, using a solution to the traveling sales-
man problem, the shortest path through the chosen points is
followed. We will refer to this baseline algorithm as “ran-
dom/TSP” if random sampling is used or “US/TSP” if uncer-
tainty sampling is used to select points.

However, the above techniques are somewhat naive, as
they look at either only spatial locations or only the benefit
to the classifier. A more sophisticated approach is to pose the
problem as a traveling salesman problem with profits (TSPP)
[10], allowing for both spatial information and benefit to the
classifier to be examined simultaneously. Our first proposed
method is to pose the problem as a TSPP problem where the
profit for visiting thejth point is the uncertainty scoreu(j)
of that point, and the constraint is that the salesman can visit
a variable number of cities per iteration as long as the total
time required to travel along all cities and reach home is less
than the traveling budgettmax for that iteration. We refer to
this approach as “US/TSPP”. Finally, we found a variant of
US/TSPP to be empirically useful: instead of supplying all
possible unlabeled points inU to the TSPP algorithm, only

1This home location may correspond to where the labeler’s vehicle is
stored/refueled or the labeler’s base of operations.

the topm points with the highest uncertainty scores (where
m ≥ ni) are used. We refer to this approach as “US/TSPP
(filtered)”, and setm = 100 in experiments.

3. EXPERIMENTS

In this section, we present example results on the Kennedy
Space Center (KSC) and Botswana hyperspectral datasets.
The data is preprocessed using both the max-cut algorithm
[11] and best-basis feature reduction [12], both of which are
useful for classifying hyperspectral data. We run experiments
using an LDA classifier and average results over five runs of
ten-fold cross validation.

Experimentally, we tried a variety of values fors andcl
2, but interestingly, specific values do not seem to affect gen-
eral trends very much. Here, we present results wheres = 80
kilometers per hour,cl = 10 minutes, andtmax = 8 hours.
Example results for these values are plotted in Figure 1. The
results should be interpreted by looking at three aspects of
each curve: the total amount of effort required to label all
of U 3, how quickly the method reduces error rate, and the
lowest error rate a method achieves. For both datasets, the
initial reduction in error is similar for all but the random/TSP
methods, but both US/TSPP and the “closest next” baseline
tend to outperform the other techniques. Not surprisingly,
the “closest next” baseline requires the least effort to label all
points inU , but US/TSPP is very competitive, and is followed
by US/TSPP(filtered), US/TSP, and then random/TSP. How-
ever, in terms of the minimum error rate achieved, the “closest
next” baseline does very poorly, and the US/TSPP method is
preferable. In addition, US/TSPP(filtered) and US/TSP tend
to achieve the lowest error rates. Thus, US/TSPP(filtered) ap-
pears to be the best tradeoff in terms of reducing error rate
quickly and achieving a low error rate.

One interesting aspect of the results, particularly on the
KSC dataset, is that the error rate can be much lower when
only a subset ofU has been labeled as opposed to when all
of U has been labeled. This phenomenon has been observed
in other works on active learning as well (e.g., [13]). Stop-
ping the labeling process early can therefore be very usefulin
reducing overall classification error. One possible reasonis
that stopping the process early helps to avoid outliers in the
training set. However, our current conjecture is that the phe-
nomena in figure 1 is due to more than just the filtering of
outliers, and we are currently investigating viable hypotheses
explaining these results.

Finally, let us look at results on individual classes. To do
this, we will use two common evaluation metrics, precision
and recall. Letni

tp be the number of points in the test set from
theith class correctly identified as being from theith class, let
ni

fp be the number of points in the test set incorrectly assigned

2experimental values fors ranged from15 to 80 kilometers per hour,
while values forcl ranged from10 to 50 minutes

3these points are plotted with an X in the graphs
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Fig. 1. Example results.

to classi, and letni
fn be the number of points in the test set

from classi incorrectly classified as some class other thani.
Then, for theith class, precision= ni

tp/(ni
tp+ni

fp) and recall
= ni

tp/(ni
tp +ni

fn). Note that both precision and recall range
from 0 to 1, with 1 being the highest possible value for either
metric.

In table 1, we look at the precision and recall of each
class with respect to label acquisition costs for US/TSPP(filt).
From the table, one can observe that the LDA classifier com-
bined with active learning is capable of producing good preci-
sion and recall values fairly quickly (i.e., with not much label
acqusition cost) on all classes.
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Table 1. Averaged values for precision/recall on each class for US/TSPP(filt)

dataset class precision(25 hrs) precision(50 hrs) precision(100 hrs) max precision
ksc scrub 0.952 0.964 0.968 0.993
ksc willow swamp 0.922 0.951 0.965 0.996
ksc cabbage palm hammock 0.769 0.857 0.911 0.950
ksc cabbage palm hammock/oak hammock 0.712 0.806 0.887 0.957
ksc slash pine 0.834 0.861 0.885 0.985
ksc oak/broadleaf hammock 0.757 0.804 0.870 0.952
ksc hardwood swamp 0.764 0.813 0.865 0.942
ksc graminoid marsh 0.900 0.930 0.951 0.979
ksc spartina marsh 0.938 0.946 0.957 0.992
ksc cattail marsh 1.000 1.000 1.000 1.000
ksc salt marsh 1.000 1.000 1.000 1.000
ksc mud flats 0.934 0.937 0.951 1.000
ksc water 1.000 1.000 1.000 1.000
bots water 0.995 0.997 1.000 1.000
bots hippo grass 0.976 0.990 0.994 0.995
bots floodplain grasses 1 0.940 0.977 0.996 1.000
bots floodplain grasses 2 0.928 0.954 0.970 0.999
bots reeds1 0.887 0.921 0.950 0.996
bots riparian 0.732 0.831 0.928 0.988
bots firescar2 0.994 0.997 1.000 1.000
bots island interior 0.955 0.976 0.989 1.000
bots acacia woodlands 0.806 0.888 0.946 1.000
bots acacia shrublands 0.787 0.855 0.916 0.996
bots acacia grasslands 0.916 0.951 0.975 0.998
bots short mopane 0.874 0.932 0.975 1.000
bots mixed mopane 0.814 0.877 0.913 1.000
bots exposed soils 0.998 1.000 1.000 1.000

dataset class recall(25 hrs) recall(50 hrs) recall(100 hrs) max recall
ksc scrub 0.928 0.946 0.967 0.987
ksc willow swamp 0.879 0.898 0.928 0.972
ksc cabbage palm hammock 0.832 0.883 0.921 0.968
ksc cabbage palm/oak hammock 0.689 0.781 0.840 0.911
ksc slash pine 0.736 0.821 0.876 0.937
ksc oak/broadleaf hammock 0.812 0.874 0.915 0.975
ksc hardwood swamp 0.823 0.916 0.920 0.989
ksc graminoid marsh 0.933 0.937 0.945 0.987
ksc spartina marsh 0.938 0.962 0.978 0.995
ksc cattail marsh 0.982 0.981 0.983 0.999
ksc salt marsh 0.925 0.931 0.948 1.000
ksc mud flats 0.958 0.962 0.984 1.000
ksc water 1.000 1.000 1.000 1.000
bots water 0.998 0.999 1.000 1.000
bots hippo grass 0.978 0.989 0.995 1.000
bots floodplain grasses 1 0.949 0.969 0.987 1.000
bots floodplain grasses 2 0.969 0.990 0.995 1.000
bots reeds1 0.840 0.900 0.939 0.991
bots riparian 0.729 0.819 0.900 0.994
bots firescar2 0.985 0.994 0.997 1.000
bots island interior 0.941 0.973 0.998 1.000
bots acacia woodlands 0.829 0.908 0.965 0.995
bots acacia shrublands 0.879 0.947 0.977 0.998
bots acacia grasslands 0.855 0.896 0.939 0.997
bots short mopane 0.783 0.823 0.865 1.000
bots mixed mopane 0.818 0.900 0.965 1.000
bots exposed soils 0.884 0.902 0.930 1.000


