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Abstract—Multispectral remote sensing images are widely
used for automated land use and land cover classification tasks.
Remotely sensed images usually cover large geographical areas,
and spectral characteristics of each class often varies over time
and space. We apply a spatially adaptive classification scheme
that models spatial variation with Gaussian processes, and
apply uncertainty sampling based active learning algorithm to
achieve better classification accuracies with a fewer number of
samples. The spatially adaptive classifier shows better perfor-
mances than the conventional maximum likelihood classifier
in both passive and active learning settings, and the active
learners achieves better classification accuracies than passive
learners with fewer number of samples for both classification
algorithms.
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I. INTRODUCTION

A. Land use and land cover classification

In the last couple of decades land use and land cover
(LULC) identification with remotely sensed images has
become of great interest to researchers from various dis-
ciplines including earth scientists and data miners, and it
has been applied to a variety of applications such as urban
planning, natural resource management, water source mon-
itoring, environmental and agricultural analyses. Remotely
sensed multispectral imaging is one of the most widely
used technologies for LULC mapping and monitoring, and
it provides synoptic and timely information over large
geographical areas. Multispectral and hyperspectral image
analysis for prediction of LULC classes, however, involves
many challenging problems. We investigate solutions for two
major problems in this paper: modeling spatial variations
within image extents and second minimizing the labeling
cost.

B. Modeling spatial variation

In multispectral images, each pixel is represented as a
d-dimensional vector, where each element in the vector
represents the spectral value taken from the corresponding
multispectral band.

With conventional classification methods, it is assumed
that spectral signature remains constant across the image.
Though this assumption may hold in small spatial footprints,
in general spatial signature may not remain constant across
the image. Spatial variations in the spectral signature occur
due to several reasons: soil type, terrain and climatic condi-
tions. In the presence of spatial variation, a classifier trained
on a small region does not generalize well to other areas.
Moreover, pooling samples taken across the image may lead
to wrong estimation of model parameters. To resolve this
problem, a classifier should be able to model underlying
variations of spectral information.

Statistical modeling of spatial variation has been well
known as spatial statistics or geostatistics. In spatial statis-
tics, nearby points are considered to be more closely corre-
lated to each other than distant points, and this relationship is
concisely stated by Waldo Tobler as “Everything is related to
everything else, but near things are more related than distant
things [1],” also known as the first law of geography. Spatial
interpolation techniques for geostatistical data are called
kriging [2], where data points are modeled as realizations of
underlying spatial random processes. In machine learning, a
similar technique has been studied as a Gaussian process
regression model, where data points in feature space are
modeled as realizations of underlying Gaussian random
processes [3]. In this paper, we apply a Gaussian process
maximum likelihood (GP-ML) classifier [4] to model spatial
variation of remote sensing data, and extend the framework
to active learning problems.

C. Minimizing labeling cost

For most supervised machine learning problems, building
a good model requires a sufficient number of labeled exam-
ples. Often one need 10-30 times the number of dimensions
to estimate parameters of statistical distributions [5]. Dif-
ficult learning problems with complex decision boundaries
require more examples than simpler ones. Often obtaining
good ground truth is the most time-consuming and expensive
task of the entire learning process, usually involving human
experts and additional data. Compared to labeled examples,



unlabeled examples are easier and cheaper to obtain in
many cases. Acquiring ground truth for LULC classification
is also expensive and time consuming. Remote sensing
images taken from satellites easily cover an entire country,
or a continent. Obtaining highly reliable class labels for all
regions covered by these images is practically not possible.
In contrast, we can easily obtain billions of unlabeled data
from these images. Active learning algorithms are designed
to minimize the number of labeled samples to achieve
desired level of accuracies. We will exploit active learning
to further enhance the spatially adaptive classification of
remote sensing imagery.

II. RELATED WORK AND OUR CONTRIBUTION

Spatial variation of remote sensing data has been studied
by many researchers. Atkinson and Lewis provided a survey
of geostatistical methods for remote sensing classification
[6], but most of these methods are about spatial smoothing
and weighting. In [7], authors applied geostatistical analysis
of hyperspectral data but did not provide tools for classifi-
cation. Goovaerts combined spectral classifier with spatially
modeled prior probabilities using indicator kriging [8].

Active learning has been a popular topic in the ma-
chine learning community for last two decades. One of
the most well-known active learning algorithm is Query-by-
committee (QBC) [9], where a committee of independent
classifiers chooses samples to be queried. MacKay [10]
proposed an active learning framework where the learner
chooses an example that has the most expected information
gain. Cohn et. al. [11] proposed a method based on a
statistical analysis to select the sample that minimizes the
variance of a given model. Lewis and Gale [12] proposed
a sampling criterion for active learning called uncertainty
sampling, which we employ in this paper. Since uncertainty
sampling does not refer to a single uncertainty measure nor
a single classification algorithm, various kinds of uncertainty
sampling strategies can be used depending on problem
domains. An active sampling strategy for Gaussian process
regression is studied by Krause and Guestrin [13], but their
work is on reducing uncertainties of the regression model
itself and is not intended to minimize classification errors.

There are active learning algorithms developed for remote
sensing problems: Rajan et al [14] provided a framework
for active learning under spatial and temporal variations of
hyperspectral data, and Jun and Ghosh [15] extended this
framework to incorporate transfer learning techniques. Liu
et al [16] proposed an active learning algorithm that models
the label acquisition cost as a sum of distances travelled to
visit the acquired points. In these works, however, classifiers
do not utilize spatial relations between samples at different
locations.

In this study we present a spatially adaptive classification
method based on the GP-ML framework [4] and apply it
to the classification of multispectral data that has relatively

−2 0 2 4 6 8
0

5

10

15

20

x

s

Toy Exmple − Spatial Variation

−2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Global Model

x

p(
x|

y)

0 2 4 6
0

0.2

0.4

0.6

0.8
Spatially Localized Model

x

p(
x|

y)

Figure 1. Toy example of spatially varying distribution. Upper left:
distribution of randomly generated points according to Gaussian distri-
butions with spatially varying means. Upper right: Gaussian distributions
at a single location. Lower left: globally estimated Gaussian distributions
without spatial information.

large spatial extents compared to other remotely sensed
images. We further extend this classification scheme by
integrating active learning principles to rank the unlabeled
samples using uncertainty measures. We have conducted sev-
eral experiments which show the benefits of our algorithm
over the conventional maximum likelihood classifier.

III. GP-ML

A. Statistical Framework

The conventional maximum-likelihood classifier (MLC)
typically models the class-conditional distribution, p(x|y),
as a multi-variate Gaussian distribution:

p(x|y = i) ∼ N(µi,Σi) , (1)

where x = (x1, x2, ..., xd)T is a d-dimensional vector repre-
senting spectral bands of a pixel, and y ∈ {1, 2, ..., c} is the
LULC class label. Parameters for multi-variate Gaussians,
θi = (µi,Σi), are obtained by a maximum-likelihood
estimation, and assumed to be constant over all possible
locations. As discussed earlier, this assumption does not hold
in general.

Figure 1 demonstrates a toy example of spatially varying
distributions. Red and blue points in the upper left plot
indicate two different classes. The x-axis indicates feature
values (one-dimensional feature), and the y-axis indicates
spatial coordinates (one-dimensional space). At a given
location, data points of each class are randomly generated
from a univariate Gaussian distribution. Means of class
conditional distributions are generated by a smooth quadratic



Algorithm 1 Outline of the GP-ML algorithm
Input: Traning data {(x1, s1, y1), (x2, s2, y2), ..., (xn, sn, yn)}, test instance (x∗, s∗). x ∈ Rd, s ∈ R2, y ∈ {1, 2, ..., c}.

1: Estimate hyperparameters (λ, σ2
ij), 1 ≤ i ≤ c, 1 ≤ j ≤ d .

2: for i = 1 to c do
3: (Xi, Si)← {(xk, sk)|yk = i}.
4: xj

i ← column vector with j-th bands of ∀x ∈ Xi.
5: Estimate predictive mean at s∗, µi(s

∗) = (µi1(s∗), µi2(s∗), ..., µid(s∗)):

µ∗ij(s∗) = Ki
j(s∗, S)[Ki

j(S, S)]−1xj
i .

6: Estimate covariance matrix Σi from Xi.
7: Calculate Pi = P (y = i)p(x∗(s∗)|y = i), where p(x∗(s∗)|y = i) ∼ N(µ∗i (s∗),Σi).
8: end for

Output: y∗ = arg maxi Pi.

function of spatial coordinates, and 21 different Gaussian
distributions are plotted for each class, for s = 0, 1, ...20.
Standard deviations are assumed to be constant, and to
be identical for both classes. The red and blue curves
indicate actual means used to generate red and blue data
points, respectively. The upper right figure shows class
conditional distributions of two classes for s = 3, while
the lower left plot shows Gaussian distributions obtained by
ML estimation without any spatial information. The green
curve indicates the ideal (Bayesian) decision boundary, and
the dashed line in magenta indicates the decision boundary
obtained by a global MLC. As can be seen in the example,
it is possible to achieve better classification accuracies by
proper modeling of spatially varying parameters.

In the previous example, the underlying quadratic model
of spatial variation was already known. In most real situa-
tions, we do not have such knowledge. Since the spectral
characteristics of a class in a multispectral image are in-
fluenced by several factors, assuming a single parametric
model is not desirable. Instead, we employ a non-parametric
Gaussian process model. In the GP-ML framework, the
class-conditional distribution of the i-th class is modeled
as a function of spatial coordinate s:

p(x(s)|y = i) ∼ N(µi(s), Σi) . (2)

where µi(s∗) = (µi
1(s∗), µi

2(s∗), ..., µi
d(s∗)). Each spectral

band of data from from the i-th class is modeled as a random
process indexed by a spatial coordinate s = (s1, s2); hence
the j-th band of xi, xi

j , can be written as

xi
j(s) = f i

j(s) + εij , (3)

where f i
j(s) is a Gaussian random process and εij is an

additive white Gaussian noise (AWGN):

εij ∼ N (0, σ2
ij) .

Given fj(s), then the class conditional distribution of xj is

p(xi
j(s)|f i

j(s)) = N (f i
j(s), σ2

ij) .

We assume a (zero-mean) Gaussian process for fj(s):

f i
j(s) ∼ GP(0, Ki

j(sl, sm)) ,

where Kj(sl, sm) is a spatial covariance function between
locations sl and sm. The zero-mean prior assumption cor-
responds to the simple kriging model in spatial statistics
[2]. In practice, we can approximately satisfy the zero-mean
assumption by normalization.

In the GP-ML model, we only model spatial variation of
the mean parameters, µj , and the spectral covariance Σ is
assumed to be constant without any spatial variation. Each
band is assumed to be independent of each other in spatial
sense, which means we do not consider cross-correlation of
xj(sl) and xk(sm) for j 6= k and sl 6= sm. This assumption
is generally not true, but modeling spatial cross-correlation
makes the model too complex. In spatial statistics, the
technique of modeling multiple correlated target variables
is called cokriging [2]. In cokriging, every target variable is
modeled as a linear combination of all other target variables
at all other locations, and we need d×d covariance functions
to model these linear relations. The cokriging model is
usually impractical and too demanding[8], since it requires
solving (n + 1) · d linear equations for n data points with
d dimensions. In addition to the computational burden, it
makes the system too sensitive to the noise leading to
inaccurate parameter estimates.

Assuming zero-mean Gaussian priors for f i
j(s), predictive

distribution for a new location s∗ is easily obtained from
the formula for conditional distributions of jointly Gaussian
random vectors [3] as described in Algorithm 1. Charac-
teristics of a Gaussian random process is solely defined
by a covariance function. We used the isometric squared
exponential covariance function [3] in our model. Using the
squared exponential covariance function, the covariance of
the j-th bands at locations sl and sm is modeled as:

Ki
j(sl, sm) = exp

(
−||sl − sm||2

2λ2

)
+ σ2

ijδlm , (4)

where δlm is the Kronecker delta function.

B. Hyperparameters

1) Length Parameter: Although a Gaussian process
model is often told to be nonparametric, the nature of a



Gaussian process is governed by several hyperparameters.
The squared exponential covariance function in (4) has
two hyperparameters: the noise power σ2

ij , and thelength
parameter λ. We assume unit-variance random processes,
assuming pre-normalized data. A length paramter determines
how fast the correlation between two points decreases as
the distance between the points increases. We used 10-fold
cross-validation to find the best length parameter. Unlike [4],
we randomly selected training and validation sets since our
data points are already scattered over the image. A wide
range of length parameters is tested and the parameter that
yields best overall classification accuracy is selected.

2) Noise power: The noise parameter σ2
ij determines

how tightly should the Gaussian process be fitted to the
given points. In kriging literature, effects from the noise
are referred as nugget effects [2], and the name came from
the mining terminology for which kriging was originally
developed. Unlike kriging, where embedding actual noise
model using nugget effect is very indirect and hard to ana-
lyze, the Gaussian process formulation enables including the
exact AWGN term and provides Wiener-filtered processes.
In our experiments, we estimated the noise power using
localized means. Our data points are sampled in 3× 3 grids
for each spatial locations, hence we approximately assumed
the fitted Gaussian process to be constant in the grid. This
approximation holds because the size of the grid is negligibly
small compared to the distances between sampled locations
and the length scale parameter. For each grid, localized
means are obtained by averaging feature values in the grid,
and then σ2

ij is calculated as averaged squared differences
of spectral values from the localized means.

IV. ACTIVE LEARNING

In machine learning literatures, active learning refers to
learning algorithms where the learner actively chooses its
own training set, and it is different from passive learning
algorithms where the learner is trained with given (often
randomly selected) dataset and has no control on how
the training set is constructed. Typically active learning
algorithms consist of several steps. Initially a learner is
trained on a small labeled dataset, and then the learner is
exposed to a pool or stream of unlabeled data. The learner
chooses k examples those are considered most useful from
the unlabeled data, and acquires ground truth for them.
Then the learner is re-trained using additional labeled data,
and the choose-and-learn process is repeated. In a slightly
different setting of query-based active learning, a learner
could generate unlabeled examples on its own instead of
selecting from given set of data. In most cases, the goal of
an active learning algorithm is either achieving a lower error
rate than passive learning algorithms with the same number
of labeled samples, or achieving equal error rate with a fewer
number of labeled samples, if not both.

Algorithm 2 Uncertainty sampling
Input :
Labeled set DL

Unlabeled set DUL

1: while |DUL| > 0 do
2: Train the classifier with DL to get

Pi(x(s)) = P (y = i)p(x(s)|y = i), ∀(x, s) ∈ DUL .

3: Get posteriors ∀i,∀(x, s) ∈ DUL:

P (y = i|x(s)) =
Pi(x(s))Pc
l=1 Pl(x(s))

.

4: Get uncertatinty scores ∀(x, s) ∈ DUL:

u(x(s)) =
1

P (y = i|x(s))− P (y = j|x(s))
,

where i = arg max
i
P (y = i|x(s)) ,

j = arg max
j 6=i

P (y = j|x(s)) .

5: Pick (xp, sp) = arg maxu(x(s)), (xp, sp) ∈ DUL.
6: Query class label yp for (xp, sp).
7: Update labeled and unlabeled sets:

DL ← DL ∪ {(xp, sp, yp)}
DUL ← DUL/{(xp, sp)}

8: end while

Active learning is a useful technique when we have ample
amounts of unlabeled data, but class labels are expensive to
obtain. Different active learning algorithms use different cri-
teria for judging usefulness of unlabeled points, and it results
in different selections. One of the most popular approaches
for active learning is the loss-reduction method, where each
unlabeled point is evaluated by the expected decrease of the
loss function. The loss-reduction type approach generally
requires re-training of the learner with all members (or
randomly selected subset) of the unlabeled set; hence it is
computationally expensive.

Another popular approach is uncertainty sampling [12],
where the learner chooses samples that it is most uncertain
about their class labels. Uncertainty sampling based algo-
rithms do not require re-training of the learner for every
unlabeled example to be evaluated, and can be easily incor-
porated with many classification algorithms. For example,
the well-known Query by Committee (QBC) [9] algorithm
also can be thought as a kind of uncertainty sampling
strategy, where disagreement between committee members
is used as an uncertainty measure.

Methods described in [14] use loss-reduction-based active
learning for classification of hyperspectral data, where the
loss function is the expected KL-divergence of the unlabeled
point. An uncertainty sampling based active learning for
hyperspectral data as well is presented in [16]. In both active
learning algorithms, estimated posterior probability is used
as a criterion to assess unlabeled data, and we need an



Figure 2. AWiFS False Color Composite Image

accurate initial model that can evaluate usefulness of the
unlabeled points for efficient active learning. In the presence
of spatial variation, using spatially adaptive classification
methods such as GP-ML algorithm provides the learner
better estimates for usefulness of unlabeled examples. The
uncertainty measure we used in this paper is the same as
in [16], and it is defined as the inverse of the differences
between posterior probabilities of the most probable and the
next probable class labels. Outline of the active learning
algorithm used in this paper is described in Algorithm 2.

V. EXPERIMENTS

A. Data

We used an early summer Advanced Wide Field Sensor
(AWiFS) data acquired by Resourcesat-1 satellite on June
16, 2008. The image has 8495 pixels per line and there
are 8488 lines. Pixel ground resolution is 56 x 56 meters
and the total image width is 370 Km. On the other hand,
width of most widely used Landsat TM image is about
180 Km and pixel width is 30 meters. Given large spatial
extents of AWiFS data, it is clear that spatial variation
is much higher than the Landsat images. As shown in
Figure 2, the image covers eastern part of Iowa and western
part of Illinois. Corn and Soybean are dominant classes.
Other classes considered are Pasture/Hay, Water, Deciduous
Forest, and Urban (developed areas). We have collected
3,573 labeled samples from 397 spatial locations (3 × 3
samples per each location). Six different LULC classes are
used as class labels. We now describe each experiment in
detail.

B. GP-ML model

To evaluate performances of the GP-ML classifier, we
varied the portion of randomly selected training data. Results
are shown in Figure 3. The x-axis shows fractions of
the training data with respect to the entire data, and the
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Figure 3. Learning curves of ML and GP-ML classifiers

remaining portions are used as test sets. Each experiment
is repeated 100 times. Since some classes have very small
number of samples, stratified sampling is done to prevent
empty classes. When training data has only 30% of the
entire data, the GP-ML classifier does not show better results
than the ML classifier, but as the size of the training set
increases, we can observe that the gap between the GP-
ML and ML results is widening. The result implies that
for proper modeling of spatial variation, we need a good
amount of labeled data, addressing the role of active learning
to maximize performances with a fewer number of labeled
samples.

Figure 5 shows how we predicted spatially varying means
with the Gaussian process model. Plots are generated by
taking a narrow strip of the given image and including all
points in the strip to obtain a one-dimensional Gaussian
process regression. Blue curves are the means modeled by
Gaussian processes, and straight green lines are the global
mean estimated by the ML classifier. Blue dots indicate
training data (averaged for each 3×3 grid), and red ones are
test data (all 9 points are plotted). The figure is generated
by using 70% of the entire data as training data.

C. Active learning

Active learning results are shown in Figure 4. For active
learning experiments, we used 10-fold cross validations to
construct common test sets for all four different classifiers,
and then subsampled the training set into initially labeled
data and initially unlabeled data. Active and random selec-
tion of data points are done within the pre-defined unlabeled
data, without altering the test set. Picking points from
the test set usually produces unrealistically high accuracies
for uncertainty sampling algorithms, because the learner
always picks the most uncertain points. As a result, the
remaining test set eventually tends to have only easy test
cases. Initially all classifiers are trained using 30% of the
each training set of the cross-validation setup, and then picks
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Figure 4. Active learning results

one point at each round until all points in the unlabeled
dataset are picked. The number 30% is determined from the
experimental results above, because that is the point where
the GP-ML and ML classifiers have similar performances.
We repeated 10-fold cross validation 10 times, and the
results from 100 experiments are averaged. Results in Figure
4 shows the typical banana curves for passive and active
learners. Because both active and passive learners initially
trained with the same training set, the curves start at the
same point. Two curves always meet at the end when
we have a finite number of unlabeled examples, because
adding all points from the unlabeled dataset again construct
the same training set again. In real experiments where the
number of unlabeled data is virtually infinite, the curves
are not guaranteed to meet each other after the starting
point. As shown in the plots, GP-ML classifiers dominate
ML classifiers at all stages. Comparing active learners to
passive learners, it is easily recognizable that the active GP-
ML classifier achieves better accuracies than the passive one,
and the same statement holds for the active and passive ML
classifiers.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we compared classification accuracies of
the GP-ML classifier to those of the ML classifier. The
spatially adaptive GP-ML classifier shows better perfor-
mances than the conventional maximum likelihood classifier
in both passive and active learning settings, and the active
learners achieve better classification accuracies than passive
learners with fewer number of samples for both classification
algorithms. It is also observable that the gain from spatial
model become greater when we have more training samples.
Although we applied the GP-ML framework only to spatially
varying data, the algorithm can be easily extended to spatio-
temporal datasets. It is also notable that proposed algorithms
can be easily combined with loss-reduction based active
learning algorithms, too. In our follow-up research, we

will investigate these possible extensions of the proposed
framework.
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