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Abstract. We propose AdaBoost.BHC, a novel multi-class boosting al-
gorithm. AdaBoost.BHC solves a C class problem by using C− 1 binary
classifiers defined by a hierarchy that is learnt on the classes based on
their closeness to one another. It then applies AdaBoost to each binary
classifier. The proposed algorithm is empirically evaluated with other
multi-class AdaBoost algorithms using a variety of datasets. The re-
sults show that AdaBoost.BHC is consistently among the top performers,
thereby providing a very reliable platform. In particular, it requires sig-
nificantly less computation than AdaBoost.MH, while exhibiting better
or comparable generalization power.

1 Introduction

Adaptive reweighting and combining methods such as boosting have become
very popular because of their remarkable ability to reduce both model bias and
variance as compared to a base learner. In particular, AdaBoost [1] has been
successfully applied to vast range of machine learning applications. AdaBoost
is an ensemble learning method for binary classification problems based on a
set of weak learners trained under different distributions. There is one baseline
requirement for the boosting procedure to work: the weak learner should be at
least 50% accurate.

AdaBoost.M1 [2] is a direct extension of the binary AdaBoost algorithm with
a multi-class weak learner. The problem of AdaBoost.M1 is that the multi-class
weak learner needs to be much stronger, since a random guess would yield only
1/C accuracy for a C class problem. This observation has prompted a plethora of
approaches that convert a multi-class problem into multiple binary classification
problems thus omitting the necessity of directly employing a multi-class classifier.
These algorithms either change a single multi-class problem into multiple binary
class problems [3], into one big binary class problem with increased number of
examples[4], or into a sequence of binary class problems with output codes [5][6].

We take a different approach by employing a binary hierarchical classifier
(BHC), which converts a multi-class problem into a set of binary problems based
on affinity between classes. In BHC, similar classes are clustered together into
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meta-classes so that the resulting binary problems are simpler to solve than
in other algorithms mentioned above. In this paper, AdaBoost.BHC, a novel
method that combines binary AdaBoost with BHC, is proposed and applied to
multi-class classification problems, and the results are compared to the results
from existing multi-class AdaBoost algorithms. The results show that the per-
formance of AdaBoost.BHC is always among the best, and it runs much faster
than AdaBoost.MI and AdaBoost.MH.

2 Dealing with Multi-class Problems

In binary classification, a classifier maps the input space onto a binary output
space, {+1,−1}. In many cases, however, we have to deal with C > 2 classes,
so the output space is defined as {1, 2, ..., C}. There are classification algorithms
that can directly handle multiple classes, such as decision trees or multi-layer
perceptrons. Producing a non-binary output, however, is not possible or less
natural for other approaches such as SVMs. In such a case, we can model a
multi-class problem using a fusion of binary classifiers.

One way to employ binary classifiers for a multi-class problem is using binary
codes to decompose the problem’s output space. One-versus-all method and
“all-pairs” method are examples of solving multi-class problem by decomposing
output spaces. The error-correcting output code (ECOC) [7] is another example
of a binary code approach combined with robust error-correcting coding. All of
these algorithms can be considered as two-stage approaches in the sense that
multiple binary classifiers are trained independently and combined to produce
the final class label at the second level. These methods have another common
aspect that the binary classification problems are specified without considering
similarity between classes. Therefore, the resulting binary problems can become
more problematic, e.g. highly unbalanced in one-vs-all approaches, and leading
to complicated, multimodal decision boundaries in ECOCs.

An alternative approach is the binary hierarchical classifier (BHC) [8] that
was developed for hyperspectral remote-sensing applications where classes (land
cover types) have certain natural groupings, i.e. some classes are more similar to
one another than to others. BHC recursively decomposes a multi-class problem
into C − 1 binary (meta-)class problems, arranged as a binary hierarchical tree.
In a BHC tree, similar classes are grouped together to form meta-classes at each
inner level of the tree. Since the resulting structure of the BHC tree is determined
by affinity between classes, the hierarchy often provides useful insights on the
problem domain. More importantly, the resulting binary classification problems
tend to be simpler, thereby facilitating both feature extraction/selection and
classifier design, and making it easier to satisfy the baseline requirement for
boosting weak learners.

At the root node of a BHC tree, the given set of classes is first partitioned into
two disjoint sets or meta-classes. The meta-classes are recursively partitioned
until the leaves of the decomposition tree are reached where each leaf corresponds
to only one of the original classes. Consequently, the number of leaf nodes in



3

Tableware Vehicle Bldg (float) Bldg (non−float) Container Headlamp

Fig. 1. BHC tree for Glass dataset. Class names in bold italic font are window classes,
and others are non-window classes.

Algorithm 1 Outline of PARTITION NODE algorithm
1. Initialize associations as a1 = 1, and ai = 0.5, ∀i > 1. ai = P (Tl|ci) = 1−P (Tr|ci).
2. Find an optimal projection by Fisher’s discriminant analysis with soft assignments.
3. Calculate the mean log-likelihood of Tr and Tl in the Fisher-projected space.
4. Update ai’s, using the mean log-likelihoods and a pre-defined step size T.
5. Repeat Steps 2 through 4 until increase in Fisher’s discriminant is insignificant.
6. Compute the entropy: H = − 1

M

P
i[ai log2 ai + (1− ai) log2(1− ai)].

7. Stop if H < θH . Otherwise, decrease T and repeat Steps 2 through 6.

the BHC tree equals to the number of classes. An outline of the partitioning
algorithm is given in Algorithm 1. As a result of the partitioning process, classes
that are similar in the input feature space tend to get lumped into the same
meta-class in the tree. In the Glass data, for example, all glass types can be
divided into two groups: window and non-window. Fig. 1 shows a BHC tree for
the Glass data, and we can observe that all classes that belong to the window
meta-class are located under the same sub-tree. An empirical study [9] has shown
that BHC offers comparable classification accuracies with that of the ECOC with
fewer number of classifiers.

Recently, another tree-based approach, margin tree, was proposed [10]. The
margin tree algorithm employs the margin between classes as a distance measure
for the hierarchical agglomerative clustering of classes. Both BHC and margin
tree produce classification trees, but differ in how this tree is built. In the margin
tree algorithm, it is assumed that the dimensionality of data is higher than the
number of samples, so that the classes are always linearly separable. On the
other hand, in BHC we need at least as many samples as number of dimensions,
which enables the Fisher’s discriminant analysis. In this paper, we chose BHC
since all datasets in our experiments have more number of samples than number
of features, but our framework is easily applicable to margin tree or other tree-
based multi-class decomposition algorithms as well.
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3 Multi-class AdaBoost

There are many variations of AdaBoost for multi-class problems. AdaBoost.M1
[2] is a direct extension of the binary AdaBoost algorithm. In AdaBoost.M1,
the weak-learner should be able to produce multi-class output. The problem
of AdaBoost.M1 is that even weak learning may not be easily obtainable for
challenging multi-class problems. Since we are giving more weight to the samples
on which our hypotheses fail, the distribution often gets harder to learn for weak
learners as we keep boosting, making it much more difficult to produce at least
50% accuracy for multi-class classifiers.

AdaBoost.MH [4] transforms a multi-class problem into a binary classification
problem by replicating examples with attached class labels, based on the Ham-
ming loss. AdaBoost.MH can handle both multi-class and multi-label problems.
AdaBoost.MH is the most popular multi-class version of AdaBoost in practice
[11], and it shows good generalization ability even for relatively hard multi-class
problems. One of the problems with AdaBoost.MH is that it converts a multi-
class problem into one huge binary problem that requires N · C examples. An
alternative approach is AdaBoost.MI [3], a direct application of the one-vs-all
method. In AdaBoost.MI, we have C independent weak learners for a C-class
problem, and each binary weak learner is dedicated to one class. Each weak
learner is trained separately, with independently managed distributions. Ad-
aBoost.MI has similar computational complexity as AdaBoost.MH, but requires
a smaller memory footprint because the algorithm can be easily modularized.

Another approach, AdaBoost.OC [5] combines the output code algorithm
with AdaBoost. It requires only one binary classifier with N examples, which
makes it much faster than other algorithms. AdaBoost.ECC [6] is based on
AdaBoost.OC, and it has been shown that AdaBoost.OC is actually a shrinkage
version of AdaBoost.ECC [12]. In AdaBoost.ECC, a coloring µt : Y → {−1,+1}
is computed at t-th round of boosting, mapping the output space onto a binary
space. A new coloring is obtained for each round, hence we have a sequence of
colorings (µ1, µ2, ..., µT ) from T rounds of boosting, which makes each class label
correspond to a unique codeword, e.g., (+1, +1, -1...). The codeword from each
class labels is multiplied by the outputs of hypotheses and summed up, and the
class label which maximizes the value is selected as the final output.

Recently, a different approach that employs a multi-class weak learner was
also proposed, where the minimum accuracy requirement for the multi-class weak
learner is 1/C rather than 1/2 [11], which is not included in our experiments
since we focus on algorithms that work with binary weak learners. We com-
pare performances of MH, MI, and ECC algorithms with that of the proposed
AdaBoost.BHC.

4 AdaBoost.BHC

In the AdaBoost.BHC algorithm, a standard binary AdaBoost algorithm is ap-
plied to each internal node of the BHC tree, with separately updated distribu-
tions. The final hypothesis of each node, Hk, is the weighted sum of hypotheses,
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Algorithm 2 AdaBoost.BHC
Given (x1, y1), ..., (xN , yN ) and a BHC tree T , where xi ∈ X, yi ∈ Y = {1, 2, ..., C}.

– T1 is the root node, and Tk.C ⊂ Y is a set of classes belong to Tk.
– Tk.L(= l) and Tk.R(= r) are indices of left and right child of Tk.
– If Tk is a leaf node, l = r = 0 and |Tk.C| = 1.

1. For each internal node Tk,
(a) Construct (Xk, Yk) = {(xi, yi)|yi ∈ Tk.C},
(b) Map (Xk, Yk)→ (Xk, Zk), zi ∈ Zk = {+1,−1}.

zi(xi) =

(
+1 if yi ∈ Tl.C

−1 if yi ∈ Tr.C

(c) Run AdaBoost on with (Xk, Zk) to obtain Hk.
2. Get Hfinal(xi), starting from k = 1

(a) If |Tk.C| = 1, output Hfinal(xi) = y ∈ Tk.C and finish.
(b) If Hk(xi) = +1, k = Tk.L. Otherwise k = Tk.R. Return to step 2-(a).

and the final multi-class output, Hfinal(xi) is determined from binary labels
generated at each node, Hk(xi) of the BHC tree. A detailed description of the
AdaBoost.BHC algorithm is given in Algorithm 2.

One of the main differences of AdaBoost.BHC from other multi-class Ad-
aBoost algorithms is that the binary decomposition of AdaBoost.BHC is de-
termined from the distribution of the input data. As a result, AdaBoost.BHC
produces more separable binary classification problems than other approaches,
hence supporting good generalization behavior. Another notable advantage of
AdaBoost.BHC is that it requires less number of computations per round than
AdaBoost.MH or AdaBoost.MI. The weak learner at the root node is trained
with N examples, and the left and the right child nodes of the root are trained
with N/2 examples on average. Assuming a full balanced binary tree, computa-
tional complexity of AdaBoost.BHC algorithm is:

log2C−1X
k=0

1

2k
f

„
N

2k

«
,

where f(·) is the complexity of the weak learning algorithm. Table 1 shows
computational requirements of MH, MI, ECC, and BHC algorithms for O(N)
and O(N2) weak learning algorithms.

5 Experiments and Results

Empirical comparisons of existing multi-class AdaBoost algorithms and Ad-
aBoost.BHC are made using datasets from the UCI machine learning repository
[13] as in Table 2. Seven different multi-class datasets from the repository are
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AdaBoost.MH AdaBoost.MI AdaBoost.ECC AdaBoost.BHC

O(N) weak learner C ·N C ·N N log2 C ·N
O(N2) weak learner C2 ·N2 C ·N2 N2 2(1− 1

C
)N2

Table 1. Time complexity comparison (per round) between different multi-class Ad-
aBoost algorithms for N examples from C classes.

Name # Train # Test # Attributes # Classes

Iris 150 4-CV 4 3

Glass 214 4-CV 10 6

Yeast 1484 4-CV 8 10

Page blocks 5473 4-CV 10 5

Landsat 4435 2000 36 6

Optical digits 3823 1797 64 10

Pen-based digits 7494 3498 16 10

Table 2. Datasets used in experiments from UCI repository

employed. 4-fold cross validation (CV) is done 10 times for Landsat, Optical dig-
its, and Pen-based digits datasets. For the other four datasets with pre-specified
test sets, each test is repeated 40 times and the results are averaged. 100 rounds
of boosting are done for each algorithm. MATLAB’s built-in classification and
regression tree (CART) is used as the base learner. Four different algorithms are
tested: AdaBoost.MH, AdaBoost.MI, AdaBoost.ECC, and AdaBoost.BHC.

Figs. 2 to 8 show training error and test error of each algorithm for seven
datasets. All algorithms except AdaBoost.MI generally show good performance
on all data. AdaBoost.BHC and AdaBoost.MH display the best generalization
behaviors for most datasets. Note that AdaBoost.BHC achieves low error rates
much faster than AdaBoost.MH in most experiments. AdaBoost.MI shows prob-
lems with Yeast and Page blocks datasets as shown in Figs. 4 and 5, where both
training error and test error increase after some rounds. One probable reason
is the fact that the class distributions of Yeast and Page blocks datasets are
highly unbalanced. The smallest class of the Yeast data has only 5 examples
from a total of 1484, and the largest class of the Page blocks dataset has 4913
examples from a total of 5473. Because AdaBoost.MI makes C different binary
classification problems, the highly skewed prior distribution makes the problem
much more difficult for weak learners. AdaBoost.MH is less affected by unbal-
anced distributions, because it converts the hypothesis space from h : X → Y
to h : (X,Y ) → (correct, incorrect) domain, hence it always yields the same
fraction of positive and negative examples. AdaBoost.ECC and Adaboost.BHC
also perform better than AdaBoost.MI under skewed distributions because they
aggregate several classes together based on the coding scheme or the affinity be-
tween classes. There are more systematic approaches to evaluate performances
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Algorithm Yeast Page blocks Landsat Optical Pen digits

AdaBoost.MH 32.0 156.9 311.8 698.9 866.8

AdaBoost.MI 43.5 128.1 331.0 731.4 688.4

AdaBoost.ECC 5.5 15.8 42.5 60.0 33.9

AdaBoost.BHC 24.8 49.3 167.1 198.7 138.1

Table 3. Average training time(seconds) for 100 rounds

of classifiers with respect to the complexity of the problem [14], which is left as
a future work.

AdaBoost.ECC generally shows relatively higher generalization error except
for the Yeast dataset. One possible reason for this is the sub-optimal output space
partitioning of the AdaBoost.ECC algorithm. AdaBoost.ECC require mappings
from Y to {+1,−1} for each round, and a recent study [15] has shown that
appropriate partitioning of the output space is important for the algorithm’s
performance. Here we employed a random partitioning, as suggested in [5]. It
is also shown that random partitioning is generally better than the optimized
max-cut algorithm, but it still has room for improvement [15]. Our empirical
results suggests that Adaboost.BHC provides better output decomposition than
AdaBoost.ECC, because it decomposes the output space based on the class-
conditional distributions, producing simpler decision boundaries for binary weak
learners.

Table 3 shows average training time of different algorithms for large (N ≥
1000) datasets. AdaBoost.ECC is clearly the fastest algorithm. AdaBoost.BHC
is slower than AdaBoost.ECC, but is significantly faster than AdaBoost.MI and
AdaBoost.MH.

6 Conclusions

In this paper, the AdaBoost.BHC algorithm incorporating multiple binary clas-
sifiers, a class hierarchy, and boosting was proposed and tested. AdaBoost.BHC
is always among the best performers if not the very best, thus providing a
more reliable solution. Moreover it is faster than all algorithms other than Ad-
aBoost.ECC. AdaBoost.ECC however typically does not generalize as well as
AdaBoost.BHC.
Acknowledgements: This research was supported by NSF Grant IIS-0705815.
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Fig. 2. Training and test errors for Iris data
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Fig. 3. Training and test errors for Glass data
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Fig. 4. Training and test errors for Yeast data
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Fig. 5. Training and test errors for Page blocks data
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Fig. 6. Training and test errors for Landsat data
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Fig. 7. Training and test errors for Optical digits data
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Fig. 8. Training and test errors for Pen digits data


