
Hybrid Hierarchical Classifiers for Hyperspectral
Data Analysis

Goo Jun and Joydeep Ghosh

Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin TX-78712, USA

{gjun, ghosh}@ece.utexas.edu

Abstract. We propose a hybrid hierarchical classifier that solves multi-
class problems in high dimensional space using a set of binary classifiers
arranged as a tree in the space of classes. It incorporates good aspects
of both the binary hierarchical classifier (BHC) and the margin tree al-
gorithm, and is effective over a large range of (sample size, input dimen-
sionality) values. Two aspects of the proposed classifier are empirically
evaluated on two hyperspectral datasets: the structure of the class hier-
archy and the classification accuracies. The proposed hybrid algorithm
is shown to be superior on both aspects when compared to other bi-
nary classification trees, including both the BHC and the margin tree
algorithm.

1 Introduction

Multi-class problems involving C > 2 classes are often tackled using a collec-
tion of binary classifiers. One way to employ binary classifiers for multi-class
problems is by using binary codes to decompose the problem’s output space.
Error-correcting output code (ECOC) is a good example of the binary code ap-
proach [1]. Other popular approaches include the “all-vs-all” method, where a
total of

(
C
2

)
classifiers are needed, and “one-versus-rest” method which requires

only C classifiers. In “all-vs-all” each binary classifier gets only a fraction of the
data for training, while in one-vs-rest, the data seen is skewed towards the “rest”
meta-class.

Another notable way to address a multi-class problem is by constructing
a hierarchical tree of binary classifiers. Binary hierarchical classifier (BHC) [2]
and margin tree [3] both decompose a multi-class problem into a hierarchically
constructed set of binary classification problems. In both algorithms, a C class
problem is decomposed into C − 1 binary classification problems, and each leaf
node corresponds to one of the output classes. The tree structure of BHC or mar-
gin tree can also be thought of representing a binary codebook. Decomposing a
multiple class problem into several binary classification problems with hierarchy
has some advantages, since similar classes are grouped together to form a meta-
class, hence providing useful insights into the problem itself. The data seen by
each classifier is not so skewed as in one-vs-rest, while the amount of data avail-
able to train the classifiers progressively decreases from the root (where all data

2

can be used), to the leaves, where only data for the two classes being considered
is inspected.

BHC and margin tree are very similar to each other in the way that they
model a multi-class problem using a tree of binary classifiers. Both algorithms
were developed to be used for high-dimensional multi-class problems. In this
paper we show that the strengths of BHC and margin tree are actually comple-
mentary to each other. This suggest the possibility of a hybrid approach that is
effective for different types of applications spanning a large range of dimension-
ality versus sample size. We then propose a hybrid hierarchical classifier that
exploits both the BHC and margin tree algorithm to construct a binary clas-
sification tree. The proposed algorithm is tested with hyperspectral data, and
the resulting tree structure and classification accuracies are compared to those
of BHC and margin tree algorithms.

1.1 Binary Hierarchical Classifier (BHC)

The binary hierarchical classifier (BHC) [2] was developed for the classification
of hyperspectral data. It decomposes a C class problem into C − 1 binary clas-
sification problems using a binary tree. An empirical evaluation has shown that
BHC performs comparably with ECOC using fewer binary classifiers [4]. At the
root node of a BHC tree, all classes are first partitioned into two disjoint meta-
classes, and obtained meta-classes are recursively partitioned until each single
class is assigned to its own meta-class. Consequently, the number of leaf nodes
in the BHC tree equals to the number of classes. The partitioning process en-
courages similar classes to remain in the same partition. At each internal node,
for a given set of classes Ω, classes belongs to Ω are to be partitioned into two
meta-classes: Ω0 and Ω1. The association of each class ωi is represented by the
posterior probability for two meta-classes: P (Ω0|ωi)+P (Ω1|ωi) = 1. The outline
of the PARTITION NODE(Ω) algorithm [2] is described in Algorithm 1.

Algorithm 1 PARTITION NODE(Ω)

1. Initially set P (Ω0|ω1) = 1, and P (Ω0|ωi) = P (Ω1|ωi) = 0.5 for i 6= 1.
2. Compute the means and covariances of the meta-classes: µj and Σj , j ∈ {0, 1}.
3. Compute the fisher projection vector w with the within-class scatter matrix SW:

w = SW
−1(µ0 − µ1) .

4. Compute the mean log-liklihood of meta-classes and update the meta-class poste-
riors P (Ωj |ωi) with the log-likelihood and temperature parameter T .

5. Repeat steps 2-5 until the incremental increase of the Fisher’s discriminant is
insignificant.

6. Stop if the entropy of meta-class posteriors is less than the threshold. If not, repeat
steps 2-6 after cooling down the temperature T .

3

1

2

3

margin

margin

(a) Linearly separable case

1

2 3

margin

margin

(b) Non-separable case

Fig. 1. In figure (a), class 1 is considered to be closer to the class 2 than to the class 3
because the margin between class 1 and 2 is smaller than the margin between 1 and 3.
In figure (b), the margin between class 1 and class 3 is extended due to the misclassified
data, thus bigger margin does not necessarily mean more inter-class distance.

In Algorithm 1, we need the inverse of a d × d matrix SW, whose rank
cannot exceed the number of samples, n, since it actually is a covariance ma-
trix of sample points. Obviously, SW is not invertible when n < d, which is
called the small sample size problem of Fisher’s linear discriminant analysis. One
possible and obvious solution is reducing the dimensionality of data by dimen-
sionality reduction techniques. For example, the best-bases feature extraction
algorithm [5] aggregates highly-correlated adjacent bands until we have desired
number of dimensions suitable for the Fisher’s discriminant analysis. Though
the best bases algorithm works well with the BHC framework, it is specifically
developed for hyperspectral data and not generally applicable to other types
of high-dimensional data. Many dimensionality reduction techniques are actu-
ally domain-specific, and general methods without any domain knowledge often
lead to significant loss of information. Another possible solutions include ap-
proximation techniques such as Regularized Discriminant Analysis (RDA) [6] or
pseudo-inverse; however these approaches generate inaccurate projections when
the scatter matrix is highly singular. Moreover, taking a pseudo-inverse of very
high dimensional data is computationally expensive.

1.2 Margin Tree

In margin tree [3], margins between pairs of classes (or meta-classes) are used
as distance measures for clustering of (meta-)classes. There are three different
ways to construct a margin tree: greedy, complete-linkage and single-linkage. It
is shown that all three methods produce comparable classification results, but
the complete-linkage method generates more balanced trees [3]. In this paper,
we also employed the complete-linkage margin tree, which is constructed by
complete-linkage hierarchical agglomerative clustering (HAC) using margins be-
tween classes as distance measures. As a results, a total of C − 1 internal nodes
will be created with C leaf nodes, same as in BHC.

4

Type Num Class Name

1 Scrub
2 Willow swamp
3 Cabbage palm hammock

Upland 4 Cabbage Oak hammock
5 Slash pine
6 Broadleaf/Oak hammock
7 Hardwood Swamp

8 Graminoid marsh
9 Spartina marsh

Wetland 10 Cattail marsh
11 Salt marsh
12 Mud flats

Water 13 Water

Table 1. Landcover classes in the KSC hyperspectral data

In the margin tree algorithm, it is assumed that the dimensionality is always
greater than the number of samples (d > n) [3], so that the samples are always
linearly separable by a maximum-margin hyperplane. When the samples are
not linearly separable, the margin measure is affected by the misclassification
cost and the resulting tree structure depends largely on the cost parameter as
shown in Fig. 1. Using non-linear kernels such as radial basis function (RBF) is a
popular option for SVMs to make the patterns separable in a higher dimensional
space; however kernels make the interpretation of margins more difficult, and
make the tree structure more sensitive to the kernel parameters.

2 Hybrid Hierarchical Classifier

As described earlier, the small sample size problem occurs in the partitioning
process of BHC when we have less number of samples than the dimensionality of
data. On the other hand, the weakness of the margin tree is exactly opposite, and
the margins between classes are not as meaningful when there is more number
of samples than the number of dimensions. Another problem is that the margin
is defined only by the samples around the decision boundary, or support vectors.
The overall distribution of data is not considered in the tree construction process.
In case of the KSC hyperspectral data [2] we used in this paper, the number
of samples per class and the number of dimensions are comparable. 13 classes
in the KSC dataset are also grouped based on traditional characterisation of
vegetation into seven upland and five wetland classes as shown in Table 1. It is
often observed in our experiments that BHC fairly distinguishes wetland classes
from the upland classes when we have fair amount of training data, while margin
tree usually fails to produce meaningful groups.

It is interesting that the requirements for the sample size and the dimen-
sionality from BHC and margin tree are mutually exclusive conditions. We can

5

Algorithm 2 BUILD TOP-DOWN HYBRID TREE(Ω)
1. If |Ω| < 3, return.
2. S(Ω) =

P
ωi∈Ω |ωi|

– If b · S(Ω) ≤ d+ 1:
• Build a margin tree with Ω.

– If b · S(Ω) > d+ 1:
• PARTITION NODE(Ω) to get Ω0 and Ω1.
• BUILD TOP-DOWN HYBRID TREE(Ω0).
• BUILD TOP-DOWN HYBRID TREE(Ω1).

avoid the small sample size problem by employing the margin tree algorithm
whenever we have less number of samples than the number of dimensions, and
we can avoid the linearly inseparable case by applying BHC algorithm whenever
the samples are not guaranteed to be linearly separable. In the following sections,
two different hybrid algorithms are suggested: top-down and bottom-up.
Building a Top-down Hybrid Tree: In the top-down hybrid method, we
initially apply the BHC algorithm starting from the root node, and the margin
tree algorithm is called when the partitioned node does not have enough number
of training samples. Let Ω = {ω1, ω2, ..., ωC} be the set of all classes, and S(Ω)
be the number of samples in Ω. The top-down hybrid algorithm is described
in Algorithm 2. The b value in step 2 is a constant that determines when the
transition between BHC and margin tree happens. Larger b means the hybrid
tree is closer to a BHC tree, and smaller b means the hybrid tree becomes closer
to a margin tree. b should be less than or equal to 1.0 to prevent the small sample
size problem. Lower bound of b can be deduced from the Cover’s theorem on
linear separability [7], according to which random dichotomies are almost surely
linearly separable when b ≥ 1.0. In practice, however, smaller b might be used
without any problem since our patterns are not randomly distributed in most
cases. Therefore we set b = 0.5 in our experiments, and also tested other values
ranging from 0.1 to 1.0. Note that when b · S(Ω) ≤ d + 1 at the root node,
the whole classification tree would be same as the margin tree. On the other
extreme, if there are enough number of samples for all classes, then the whole
tree would be exactly same as the BHC.
Building a Bottom-up Hybrid Tree: A second way to build a hybrid clas-
sification tree is building the tree bottom-up. The overall structure of top-down
hybrid tree is close to that of the BHC tree, since initial partitioning of classes
at the root node follows the BHC algorithm, unless there are so few number of
samples that the tree becomes identical to a margin tree. Unlike the top-down
tree, the hybrid tree obtained from the bottom-up approach could have different
overall structure from the BHC tree, even at the root node. The main idea is ag-
gregating classes into several meta-classes using the margin tree algorithm until
the number of samples in each meta-class becomes sufficient for the BHC algo-
rithm. Once the number of samples in the smallest meta-class (or class) is larger
than the dimensionality, we apply BHC on the meta-classes, instead of individ-

6

Algorithm 3 BUILD BOTTOM-UP HYBRID TREE(W)

1. If |W | < 2, stop.
2. Find Ωa and Ωb (a 6= b) in W s. t.:

(Ωa, Ωb) = argmin
Ωi,Ωj∈W

max
ωk∈Ωi,ωl∈Ωj

margin(ωk, ωl)

3. Merge Ωa and Ωb to make a new meta-class Ωc = Ωa ∪Ωb.
4. Update the working set: W = (W − {Ωa} − {Ωb}) ∪ {Ωc}
5. Find Ωm and Ωn (m 6= n) such that:

(Ωm, Ωn) = argmin
Ωm,Ωn∈W

S(Ωm) + S(Ωn)

– If [S(Ωm) + S(Ωn)] < 2 · d, then repeat from step 1.
– Else, build a BHC tree with W .

ual classes. The bottom-up tree building starts with a set of meta-classes, and
each meta-class contains only one class in it initially: Ω1 = {ω1}, Ω2 = {ω2}, ...
, ΩC = {ωC}. Let’s define the working set W as W = {Ω1, Ω2, ..., ΩC}, initially.
The BUILD BOTTOM-UP HYBRID TREE algorithm is shown in Algorithm 3.

3 Experimental setup

Land cover classification by hyperspectral image (HSI) analysis has become an
important part of remote sensing research in recent years [8]. The proposed
method was evaluated on hyperspectral images taken from two geographically
different locations: NASA’s John F. Kennedy Space Center (KSC) [9] and the
Okavango Delta in Botswana [10]. We will call the two datasets the KSC and
the Botswana datasets, respectively. The KSC dataset was acquired by NASA
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and originally con-
sisted of 242 bands. After removing noisy bands, only the remaining 176 bands
are used. There are 13 different land cover classes including water and mixed
classes. The hyperspectral image used for experiments has 512× 614 pixels with
18m spatial resolution. The Botswana dataset was obtained from the Okavango
Delta by the NASA EO-1 satellite with the Hyperion sensor on May 31, 2001.
The acquired data originally consisted of 242 bands, but only 145 bands are used
after preprocessing. The area used for experiments has 1476 × 256 pixels with
30m spatial resolution, with 14 different land cover classes. The KSC dataset
has 5121 samples with class labels, and the Botswana dataset has 3248 samples.

For each dataset, samples from each class are randomly divided into 75%
training set and 25% test set, and then the training set is sub-sampled to take
10, 20, 30, 50, 75% of the original training set. The purpose of the additional
subsampling is to observe the learning curves of different classifiers, and the
100% case is not included since the hybrid algorithms produce results identical
to BHC. The random splitting procedure is repeated for 10 times to obtain

7

means and standard deviations of classification accuracies. Each classification
tree is trained and tested with two different types of SVM kernels: radial basis
function (RBF) and linear. Linear kernel results are included since the original
margin tree algorithm is based on the linear kernel [3]. Parameters for RBF
kernel is found by 3-fold cross validation for each experiment.

4 Results

Two aspects of the hierarchical classifiers are evaluated: the structure of the
class hierarchy, and the classification accuracies. Table 2 and Fig. 2 show the
structural evaluations, and Tables 4 and 5 show classification accuracies. Best
results are emphasized in bold. Note that we did not compare with ”one-vs-all”,
”all-pairs” or certain direct multi-class methods since a previous, extensive study
already showed BHC to be superior than or comparable to these methods for
hyperspectral data [4].

Table 2 shows the average distances between different groups of classes gen-
erated from the KSC training data, representing how well the hierarchy of the
tree complies with the domain knowledge. In Table 1, classes in the KSC data
are categorized as upland or wetland classes. Figures in Table 2 are obtained
by calculating the minimum tree-traversal distance between two leaf nodes. For
example, the distance between two sibling nodes is 2. For each algorithm, the
first row indicates the average distance between all upland classes, the second
row is the distance between all wetland classes, and the third row indicates the
average inter-class distance between each upland and wetland class pairs. A tree
is considered to have better structure when the values in the first and the sec-
ond rows are much smaller than the value in the third row. As can be seen in
the table, the bottom-up hybrid algorithm shows more significant separations
between two land types with only a small number of training samples. To bet-
ter visualize this advantage, classification trees obtained from the 20% training
samples are shown in Fig. 2. Fig. 2(a) shows the tree structure obtained from
the BHC, and trees in Fig. 2(b), 2(c), and 2(d) are from margin tree, top-down
hybrid, and bottom-up hybrid algorithms, respectively. Upland class names are
printed in normal fonts, and wetland class names are printed in bold italic for
distinction. Fig. 2(d) clearly demonstrates significant separation between two
groups generated from the bottom-up hybrid hierarchical tree.

Table 4 shows the average classification accuracies and standard deviations
from the KSC data, and Table 5 shows the results for the Botswana data. In
most cases there are not much difference in classification accuracies. Although
not significant, we can still observe the tendency changes as the increased number
of data points: top-down hybrid results are closer to the margin tree results when
we have smaller number of samples, and the results become closer to the BHC
results as we have more training samples. The bottom-up hybrid algorithm shows
at least equal performances to all other algorithms, and shows better results than
others when the linear kernel is employed.

8

We also tested the effect of b value in the top-down hybrid algorithm. Table
3 shows the average classification accuracies for the KSC dataset with different
values of b. When b is very small, the numbers are similar to the results from the
margin tree in Table 4, and the results are more similar with the results from
the BHC when b = 1.0.

5 Conclusion

It is shown that by using the proposed hybrid hierarchical classifiers, a classi-
fication tree can be built much more effectively than by using the BHC alone,
because the proposed method does not suffer from the small sample size problem.
The hybrid algorithm can also generate much more meaningful tree structures
than the margin tree can because the suggested method looks for margins be-
tween classes only when the samples are linearly separable. The performance of
the generated classification tree is evaluated by two measures: the separation
between upland and wetland classes, and the classification accuracy. Bottom-
up hybrid approach shows best separation results, and both hybrid approach
yielded comparable, if not better, classification accuracies.
Acknowledgements: This research was supported by NSF Grant IIS-0705815.

References

1. T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-
correcting output codes,” Journal of Artifical Intelligence Research, vol. 2, p. 263,
1995.

2. S. Kumar, J. Ghosh, and M. M. Crawford, “Hierarchical fusion of multiple clas-
sifiers for hyperspectral data analysis,” Pattern Analysis & Applications, vol. V5,
no. 2, pp. 210–220, 2002.

3. R. Tibshirani and T. Hastie, “Margin trees for high-dimensional classification,” J.
Mach. Learn. Res., vol. 8, pp. 637–652, 2007.

4. S. Rajan and J. Ghosh, “An empirical comparison of hierarchical vs. two-level
approaches to multiclass problems,” Multiple Classifier Systems, pp. 283–292, 2004.

5. S. Kumar, J. Ghosh, and M. M. Crawford, “Best-bases feature extraction algo-
rithms for classification of hyperspectral data,” IEEE Trans. on Geosci. and Re-
mote Sens., vol. 39, no. 7, pp. 1368–1379, 2001.

6. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
Springer-Verlag New York, Inc., 2001.

7. T. M. Cover, “Geometrical and statistical properties of systems of linear inequali-
ties with applications in pattern recognition,” Electronic Computers, IEEE Trans-
actions on, vol. EC-14, no. 3, pp. 326–334, 1965.

8. D. Landgrebe, “Hyperspectral image data analysis,” Signal Processing Magazine,
IEEE, vol. 19, pp. 17–28, Jan 2002.

9. J. T. Morgan, Adaptive hierarchical classifier with limited training data. PhD
thesis, Univ. of Texas at Austin, 2002.

10. J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investigation of the random
forest framework for classification of hyperspectral data,” IEEE Trans. Geosci. and
Remote Sens., vol. 43, no. 3, pp. 492–501, 2005.

9

Tree Distance
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC
Upland 5.70 (0.24) 5.61 (0.25) 5.35 (0.20) 5.12 (0.15) 4.97 (0.04)
Wetland 6.74 (0.33) 6.40 (0.47) 6.12 (0.22) 5.72 (0.22) 5.44 (0.08)
Between 6.40 (0.26) 6.30 (0.19) 6.37 (0.11) 6.53 (0.07) 6.63 (0.05)

Margin
Tree

Upland 6.30 (0.70) 6.02 (0.86) 6.64 (0.50) 6.42 (0.81) 5.60 (0.86)
Wetland 5.42 (0.55) 5.34 (0.50) 5.40 (0.47) 5.34 (0.49) 5.62 (0.18)
Between 6.47 (0.40) 6.53 (0.38) 6.39 (0.43) 6.49 (0.45) 6.68 (0.49)

Hybrid
Top-down

Upland 6.31 (0.26) 5.72 (0.18) 5.43 (0.28) 5.12 (0.15) 4.97 (0.04)
Wetland 5.72 (0.34) 6.06 (0.33) 5.96 (0.25) 5.72 (0.22) 5.44 (0.08)
Between 6.47 (0.25) 6.37 (0.14) 6.37 (0.11) 6.52 (0.07) 6.63 (0.05)

Hybrid
Bottom-up

Upland 4.53 (0.18) 4.72 (0.60) 5.20 (0.86) 5.10 (0.22) 4.95 (0.00)
Wetland 3.82 (0.63) 4.24 (0.75) 4.16 (0.48) 5.46 (0.34) 5.28 (0.25)
Between 8.06 (0.52) 8.10 (0.89) 8.09 (0.68) 6.83 (0.32) 7.03 (0.19)

Table 2. Average distances between: 1) upland classes 2) wetland classes 3) upland
and wetland classes

Scrub Broad/
Oak

CP/
Oak

Slash
pine

CP Gram.
marsh

Spar.
marsh

 Mud
flats

Willow Water Hard!
!wood

 Cat.
marsh

Salt
marsh

(a) BHC

Salt
marsh

 Cat.
marsh

Willow Hard!
!wood

Water Mud
flats

CP/
Oak

Slash
pine

Gram.
marsh

Spar.
marsh

CP Scrub Broad/
Oak

(b) Margin Tree

Scrub Broad/
Oak

CP/
Oak

Slash
pine

CP Mud
flats

Gram.
marsh

Spar.
marsh

Willow Water Hard!
!wood

 Cat.
marsh

Salt
marsh

(c) Top-down Hybrid

Water Willow Hard-
-wood

Scrub Broad/
Oak

CP CP/
Oak

Slash
pine

Salt
marsh

 Cat.
marsh

 Mud
flats

Gram.
marsh

Spar.
marsh

(d) Bottom-up Hybrid

Fig. 2. Typical tree structure from BHC, Margin Tree, Top-down Hybrid, and Bottom-
up Hybrid

10

b
Training set size (% of full training set)

10% 15% 20% 30% 50% 75%

0.1 89.45 (1.23) 91.59 (1.02) 92.45 (0.85) 93.55 (0.65) 94.38 (0.65) 95.12 (0.50)

0.3 89.52 (1.22) 91.64 (0.92) 92.25 (0.95) 93.43 (0.71) 94.75 (0.67) 95.29 (0.57)

0.5 89.79 (0.85) 90.80 (1.41) 91.65 (1.10) 93.40 (0.70) 94.73 (0.67) 95.23 (0.49)

0.7 89.32 (1.41) 90.60 (1.53) 91.63 (1.29) 93.43 (0.67) 94.71 (0.59) 95.24 (0.51)

1.0 89.66 (1.42) 90.00 (0.88) 91.58 (1.37) 93.41 (0.62) 94.71 (0.59) 95.24 (0.51)

Table 3. Classification accuracies for KSC data with different values of b

(a) RBF kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 89.66 (3.04) 91.47 (3.70) 93.38 (3.58) 94.74 (2.70) 95.23 (2.10)

Margin Tree 89.45 (4.66) 92.45 (1.56) 93.55 (3.14) 94.37 (3.29) 95.12 (2.42)

Hybrid Top-down 89.79 (0.85) 91.65 (1.10) 93.40 (0.70) 94.73 (0.67) 95.23 (0.49)

Hybrid Bottom-up 89.17 (0.70) 92.25 (0.90) 93.43 (0.61) 94.41 (0.71) 95.36 (0.49)

(b) Linear kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 85.90 (0.75) 89.76 (1.12) 91.02 (1.44) 93.66 (1.38) 94.94 (0.60)

Margin Tree 87.20 (1.62) 90.99 (1.72) 89.97 (1.56) 89.80 (0.82) 91.07 (1.55)

Hybrid Top-down 87.20 (2.43) 90.01 (1.13) 91.15 (1.42) 93.67 (1.38) 94.94 (0.60)

Hybrid Bottom-up 90.90 (1.07) 92.30 0.77) 92.82 (1.24) 93.20 (1.26) 94.21 (0.98)

Table 4. Classification accuracy (%) for KSC data

(a) RBF kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 86.84 (1.84) 91.14 (1.17) 91.92 (1.41) 94.97 (0.64) 96.10 (0.90)

Margin Tree 87.84 (2.19) 91.09 (1.44) 92.94 (0.91) 94.92 (0.82) 96.01 (1.07)

Hybrid Top-down 87.86 (1.61) 90.63 (1.38) 92.24 (1.08) 94.97 (0.67) 96.10 (0.90)

Hybrid Bottom-up 87.29 (1.93) 91.11 (0.90) 92.53 (1.01) 94.76 (1.16) 96.11 (0.92)

(b) Linear kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 80.27 (3.33) 87.37 (2.37) 88.91 (1.67) 89.48 (1.63) 90.34 (1.72)

Margin Tree 86.40 (3.76) 87.21 (5.16) 90.31 (2.56) 90.49 (3.78) 94.18 (3.78)

Hybrid Top-down 82.47 (4.22) 87.66 (2.49) 88.84 (1.82) 89.48 (1.63) 90.34 (1.72)

Hybrid Bottom-up 90.38 (1.48) 93.54 (0.68) 93.36 (1.81) 91.11 (1.21) 90.09 (1.50)

Table 5. Classification accuracy (%) for Botswana data

