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ABSTRACT

Automated classification of land cover types based on hyper-
spectral imagery often involves a large geographical area, but
class labels are available for only small portions of the entire
area. Moreover, the spectral signature of the same land cover
class may vary substantially over different locations. When
a classifier is trained on a specific geographical location and
applied to other areas, it often performs poorly because of
such spatial variation of spectral signatures. In this paper,
we propose a novel framework for classification of hyper-
spectral data: a Gaussian-Process Maximum-Likelihood (GP-
ML) model where the mean of each spectral band is spatially
modeled using a Gaussian process. Our framework provides a
practical and effective way to model spatial variations of high
dimensional data such as hyperspectral images for classifica-
tion problems.

Index Terms— hyperspectral data, remote sensing, clas-
sification, Gaussian process, kriging, spatial information

1. INTRODUCTION

In recent years, land cover classification by hyperspectral
image (HSI) data analysis has become an important part
of remote sensing research [1]. Compared to conventional
multi-spectral images where each pixel usually contains tens
of bands, pixels in hyperspectral image usually consist of
more than a hundred spectral bands, providing fine-resolution
spectral information. HSI can cover very large areas, but it
is not usually possible to obtain highly accurate class labels
for all locations in the image. Figure 1 shows the Botswana
image used in our experiments with its land cover class
map. Different colors indicate different individual land cover
classes. The gray areas in the figure denote areas without any
class label. As shown in the figure, only a small fraction of
the entire region actually has class labels. Because we have
spatially restricted training data, we need a classification sys-
tem that can accurately predict class labels for test data that
is spatially distant from the training data. Figure 2 shows

This work was supported by NSF Grant IIS-0705815.

Fig. 1. Botswana image with a class map

how spectral signatures of a single class change over different
spatial locations. Predicting land cover classes under spatial
variation is a challenging problem.

Spatial modeling of data has long been studied as an im-
portant field of statistics, called spatial statistics or geostatis-
tics. The first law of geography according to Waldo Tobler
is “Everything is related to everything else, but near things
are more related than distant things [2].” This well describes
the importance of neighborhood information as well as global
(non-myopic [3]) relationships between data points. Krig-
ing [4] is a well-known technique to model spatial dependen-
cies of data points, and it has been widely studied for various
problems of spatial statistics. In kriging, each point is mod-
eled as an outcome of a random process, and this approach
has recently been adopted by the machine learning commu-
nity through its interest in Gaussian process models [5]. In a
Gaussian process model, data points are modeled as realiza-
tions from a Gaussian random process prior. Prediction for a
new sample is obtained by calculating posterior distributions
from observed data points and a covariance function. Gaus-
sian process and kriging are closely related. Both techniques
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Fig. 2. Spectral signatures of water class at different locations

share important key concepts, but differ in some details. Most
of all, Gaussian process models in machine learning usually
work in feature spaces, while kriging mostly deals with phys-
ical spaces. We exploit both techniques in our experiments
by applying Gaussian process models to model spectral vari-
ations over physical spaces.

2. RELATED WORKS

There have been algorithms developed for hyperspectral data
that are intended for spatially distant datasets, or that use
spatial information. For example, Rajan et al [6] provided
a framework to transfer knowledge between different spatial
and temporal locations, but this approach does not utilize spa-
tial relations between locations. Another approach is to add
information from homogeneous neighborhoods as in [7], but
it does not model varying spectral signatures of hyperspectral
data directly.

Griffith analyzed spatial dependencies of hyperspectral
data [8], but did not provide classification methods. Atkinson
and Lewis surveyed geostatistical methods for remote sens-
ing, and introduced several spatial smoothing and weight-
ing methods [9]. The closest approach to this paper is by
Goovaerts[10], where the prior probability of the i-th class,
Pi(s), is modeled by indicator kriging. Gaussian process
has been long known in spatial statistics as kriging [4], but
kriging has been considered to be only suitable for model-
ing of single or small number of target variables. In this
paper, we directly model spatially adaptive class-conditional
distributions for each band.

3. METHODS

3.1. GP-ML framework

Let x = (x1, x2, ..., xd)T be a d-dimensional vector repre-
senting spectral bands of a pixel in a hyperspectral image, and
y ∈ {y1, y2, ..., yc} be a class label that indicates land cover
type. The class-conditional probability distribution p(x|yi) is

usually assumed to be multivariate Gaussian:

p(x|yi) ∼ N(µi,Σi) , (1)

where µi is the mean vector and Σi is the covariance matrix
of the i-th class. For simple notation, let us focus for now
on a single class and omit i. Typically, both µ and Σ are
considered to be constant over the entire image. Instead we
model xj , the j-th band of x, as a random process indexed by
a spatial coordinate s = (s1, s2):

xj(s) = fj(s) + εj ,

where fj(s) is a Gaussian random process and εj is an addi-
tive white Gaussian noise (AWGN) term, ε ∼ N (0, σ2

εj ). Our
prior for f(s) is a (zero-mean) Gaussian process:

fj(s) ∼ GP(0, Kj(sl, sm)) ,

whereKj(sl, sm) is a spatial covariance function between lo-
cations sl and sm. Then given fj(s), the distribution of xj is
also Gaussian:

p(xj(s)|fj(s)) = N (fj(s), σ2
εj ) .

We assume each band is spatially independent of each
other, hence neglecting cross-correlation of xj(sl) and xk(sm)
for j 6= k and sl 6= sm. This assumption implies that the spec-
tral covariance Σ is assumed to be constant without spatial
variation. Modeling multiple correlated target variables has
been studied in spatial statistics, and it is called cokriging
[4]. It is impractical and too demanding, however, to model
hyperspectral data directly by cokriging [10], since cokriging
requires solving (n+ 1) · d linear equations for n data points
with d dimensions, and it makes the matrix so big that the
system becomes sensitive to noise and inaccurate parameters.

Assume now that we have a set of labeled data points
from this class, X = (x1,x2, ...,xn), located at correspond-
ing spatial coordinates S = (s1, s2, ..., sn), and let xj be a
vector consists of j-th bands in X , xj = (x1j , x2j , ...xnj)T .
Then the predicted distribution of the j-th band of a new data
point x∗ at coordinate s∗ can be easily derived from the con-
ditional distribution of jointly Gaussian random vectors. The
distribution of x∗j given xj and S is Gaussian with the mean:

µj(s∗) = Kj(s∗, S)[ΣS + σ2
εjI]−1xj , (2)

From (2), we can derive our spatially adaptive class-
conditional Gaussian distribution:

p(x(s∗)|yi) ∼ N(µi(s∗), Σi) , (3)

where µi(s∗) = (µi1(s∗), µi2(s∗), ..., µid(s∗)). Maximum-
likelihood classification is done with spatially adapted Gaus-
sian distributions to find yi that maximizes the posterior prob-
ability p(yi|x(s)).



The popular squared exponential covariance function is
employed [5]. The covariance function is assumed to be iden-
tical over all classes, and over all bands except for a noise
term:

Kj(sl, sm) = exp
(
−||sl − sm||2

2λ2

)
+ σ2

εjδlm , (4)

where δlm is the Kronecker delta function.

3.2. Fitting Hyperparameters

In the Gaussian process model, a covariance function deter-
mines the nature of the process, and the covariance function
is characterized by hyperparameters. In (2), we have two
hyperparameters, σ2

εj and λ. σ2
εj is the noise power, and λ

is the length parameter that determines how fast the correla-
tion between two points decreases as the distance between the
points increases. One way to find the best hyperparameter is
to use cross-validation. A random sampling of training data
to construct training and validation sets turned out to be inap-
propriate, however, since randomly sampled training and test
data points are too close to each other. In this case, the ob-
tained length parameter tends to be too small because there
always exist a nearby training point to the test point. The
situation is opposite to a conventional cross-validation setup,
where homogeneity between training and validation data is
desirable. We divided the training data into spatially disjoint
cross-validation sets, and searched for λ that provides highest
classification accuracies. As a result, we set λ = 530.

σ2
εj can be interpreted as deviations from the mean func-

tion, and we estimated the deviation by calculating localized
means for isolated patches as shown in Figure 2. Each patch
is identified by connected component analysis. σ2

εj is calcu-
lated as averaged squared differences of spectral values from
the localized means.

3.3. Spatially Localized Priors

So far we have only considered spatial modeling of the mean
vectors. In hyperspectral images, however, prior probabil-
ity of each class also varies spatially[10]. We applied self-
training [11], a method of semi-supervised learning, to esti-
mated localized prior probabilities, since most of the map is
unlabeled. The entire map is divided into equally sized tiles,
and a classifier is applied to each tile with global priors that
are estimated from the training set. For GP-ML classification,
we estimate the mean vector for the center of the tile using the
proposed algorithm and assume that this mean vector is com-
mon for all pixels in the tile. Classified results for each tile are
then used to estimate localized prior probability distribution
Pi(s). Using the localized priors and class-conditional dis-
tributions, we run maximum-likelihood (ML) classifiers once
more for each point of interest to obtain the final class label.

4. EXPERIMENTS AND RESULTS

A Hyperion hyperspectral image taken from Okavango Delta,
Botswana in May 2001 is used for experiments.The acquired
data originally consisted of 242 bands, but only 145 bands
are used after preprocessing. The area used for experiments
has 1476 × 256 pixels with 30m spatial resolution. We used
two spatially disjoint class maps from the same geographical
region, and there are 9 classes in total. Best-bases feature ex-
traction algorithm [12] is used to aggregate highly correlated
adjacent bands, which is beneficial for a spatially independent
band model. The number of bands for best bases algorithm is
40, as determined by cross-validation. Fisher’s feature extrac-
tor is also applied after best-bases extraction. The first class
map is used as a training set, from which we obtain global
model p(x|yi) and spatially adaptive model p(x(s)|yi), and
the second map is used as a test set. For prior estimation,
we used a 32 × 32 tile size. Table 1 shows classification ac-
curacies from ML and GP-ML classifiers, before and after
localized estimation of prior probabilities. Our baseline of
86.68% is the ML result without localized priors. As can be
seen in the table, our algorithm with Gaussian process model
and localized prior shows the best result, achieving 92.19%
accuracy for a nine-class problem.

More detailed multi-class classification results are shown
in Figure 3. GP-ML results are better than ML results for
most classes, except for classes 4 and 8. Most probable reason
for this phenomenon is that classes 4 and 8 have test points
located relatively far away from the training points. The un-
certainty of a Gaussian process regression model increases as
the distance between training and test points increases, which
makes the prediction inaccurate. A fully classified map of
entire Botswana data is shown in Figure 4, where different
colors indicate different land cover classes.

ML GP-ML
without Pi(s) 86.68% 90.59%

with Pi(s) 89.40% 92.19%

Table 1. Classification results from ML and GP-ML algo-
rithms, before and after spatially localized priors

5. CONCLUSION

We have proposed a novel method for classification of hyper-
spectral data with a spatially adaptive approach that models
class-conditional distributions by Gaussian processes, and
estimates spatially localized prior probabilities with semi-
supervised learning. Experimental results show that the
proposed method shows significant improvements over the
baseline algorithm where no spatial information is consid-
ered.
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Fig. 4. Fully classified map with color-coded class labels: ML
with Pi(s) (left) and GP-ML with Pi(s) (right)
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