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OTA-Based Neural Network Architectures 
with On-Chip Tuning of Synapses 

Joydeep Ghosh, Patrick Lacour and Spence Jackson 

Abstract- We propose and analyze analog VLSI implemen- 
tations of neural networks in which both the neural cells and 
the synapses are realized using Operational Transconductance 
Amplifiers (OTAs). These circuits have inherent advantages of im- 
munity to noise, very high input/output impedances, differential 
architecture with automatic inversion, and density. An efficient 
on-chip technique for weight adaptation and for adjusting the 
gain of OTA-based neurons is proposed. Power and area re- 
quirements are obtained. These building blocks can be used to 
efficiently construct several types of networks including Hopfield 
networks, Boltzmann machines and cellular networks. Circuit 
simulations using MTIME show that small Hopfield memories 
converge in about a psec. 

I. INTRODUCTION 
NALOG IMPLEMENTATIONS of artificial neural net- A works have a number of unique advantages and problems 

when compared to digital realizations. The primary motivation 
for implementing a neural network algorithm with analog 
circuitry is speed. Analog circuits can respond to real-time, 
analog inputs without requiring any conversion to an artificial 
solution space. Countering the above analog advantages is a 
more extensive list of difficulties and shortcomings. Typically, 
analog circuits are more complicated to design and more 
limited in application than digital circuitry [ 11. Analog circuits 
also have problems in scaling to smaller device geometries due 
to the careful balance between the various elements required 
for circuit operation. This balancing act also makes the analog 
circuitry more susceptible to process and environmental varia- 
tions. Such susceptibility can be overcome by designing more 
conservatively but that will reduce the circuit’s speed which, 
again, is the primary motivation for using analog circuitry. 

The original implementation of the continuous Hopfield 
model was achieved using op-amps as the neurons and re- 
sistors as the interconnection weights [2]. Hopfield pointed 
out that analog implementations exhibit some of the basic 
characteristics of biological neural networks: inter-neuron and 
intra-neuron delays and graded response to stimuli. However, 
it was necessary to include two op-amps per neuron to be able 
to provide both excitatory and inhibitory connections since 
real resistors cannot have negative values. The output of the 
second op-amp was inverted to provide the negative signal. 
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This requires extra silicon area which is a major factor in IC 
costs. Further, as was discussed in detail by Barkan, Smith, and 
Persky [3], the specification of the resistor values to achieve 
the desired inter-neuron weighting is non-trivial because of the 
parallel resistances of the interconnections, and the input and 
output impedances of the op-amps. If the output impedance 
is finite, then the calculation of resistor values to achieve the 
proper weighting becomes quite complicated. 

Relying on resistors for interconnection weights in more 
general artificial neural networks also poses several limitations. 
First, resistors in silicon technology are extremely demanding 
in terms of required area. The materials for fabricating resis- 
tors in silicon force trade-offs. Well material (heavily doped 
regions of silicon) offer a moderately high sheet resistance 
per unit area (p) ,  which allows for less space impact, but the 
material has undesirable temperature and voltage dependencies 
which would modify the resistance value as the circuits’ 
operating conditions vary. Doped polysilicon offers a more 
stable resistive material but it is characterized by a small sheet 
rho and thus would place large area demands on the circuit. 
Secondly, resistors cannot be easily varied once fabricated so 
circuit design must be targeted to a specific and unchanging 
problem such as a known set of patterns (for associative mem- 
ory) a time-consuming and costly endeavor. Since problems 
are always changing, this is perhaps the most crippling deficit 
of analog implementations. Further complications include the 
op-amp requirements of a virtual ground circuit for current 
summing at the neuron input, as well as relatively noise-free 
power and signal lines, which is extremely difficult if the 
circuit contains many sub-circuits that are switching on and 
Off. 

In 1987, Alspector, et al. [4] introduced the use of differ- 
ential voltage on two floating gates as the basis of a general 
analog synapse for implementing a variety of neural network 
architectures. The positive aspects of this analog circuitry 
include speed of execution and reduction in synapse size. The 
main problem with analog synapses has traditionally been the 
difficulty in maintaining sufficient flexibility to allow future 
modification to the implemented network. The ETANNTM 
chip, developed using the floating gate synapse, has been 
reported [ 5 ]  to be capable of 7-8 bits of weight resolution 
for short time periods and 4 bits for extended periods. This 
limitation is due to the characteristics of floating gate tech- 
nology. 

The floating gate synapse was the first flexible analog 
design capable of construction in VLSI. Subsequently, several 
research groups have investigated both silicon versions of 

10.57-7130/94$04.00 0 1994 IEEE 



50 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 41, NO. 1, JANUARY 1994 

r I I 1 

V O N  ITU~L-.-~ 

“neural” components and elements, as well as system imple- 
mentations [6]. The potential of using multi-input Operational 
Transconductance Amplifier (OTA) circuit to build an artificial 
neuron was suggested by Reed [7]. He focused on the design 
of a single-neuron rather than on network or system-level 
design. Since then, a few VLSI neural net architectures have 
used OTAs in a limited fashion. For example, in [8], OTAs 
are used as analog memory and as comparators in realizing 
discrete-time cellular neural networks. Lont and Guggenbuhl 
[9] emphasized the size advantage of nonlinear transcon- 
ductance synapses. The flexible use of a transconductance 
circuit in conjuction with a nonlinear resistive load to form a 
“distributed neuron-synapse” unit, was demonstrated in [ 101. 

This paper proposes and evaluates analog circuits based on 
the uniform use of OTAs for implementing both synapses and 
neurons, and considers several system-level design issues. In 
Section 2, we introduce the basic OTA circuits used in this 
paper. An on-chip tuning mechanism is proposed. Section 
3 presents a case study on implementation of a Hopfield 
network, and provides simulation results. The implementation 
of a Boltzmann machine is also considered. In Section 4, we 
compare the new technique to alternate hardware implemen- 
tations. 

11. NETWORK DESIGN WITH OTAs 

The Operational Transconductance Amplifier (OTA) is ide- 
ally a voltage-controlled current source with infinite input 
impedance and infinite output impedance [ 111. The approach 
for utilizing OTAs in this paper is, in principle, an extension 
of an op-amphesistor combination proposed for implementing 
associative memories [2]. In an op-amp design, currents from 
other neurons are summed over synaptic resistors and the 
resulting net voltage acts as the input to the op-amp that serves 
as a current neuron. The problems with this design include 
the difficulty of implementing stable VLSI resistors that can 
be modified after manufacture and a susceptibility to noise 
due to inputs and outputs being single ended. The architecture 
proposed in this paper uses only one basic building block to 
fulfill both the synapse and the neuron function. 
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Fig. 1 .  An OTA synapse: (a) Tuning Mechanism; (b) Basic OTA structure; (c) Synapse schematic showing input, output and control terminals. 

A. The OTA Synapse 

An OTA synapse is obtained by concatenating a weight 
tuning mechanism with the basic OTA structure, as shown in 
Fig. 1. An OTA is ideally a voltage-controlled current source 
with infinite input and output impedance. The OTA gain is 
modified by adjusting the gate voltage of a MOSFET (via 
biasing with ITUN in Fig. 1) thus affecting the OTA transcon- 
ductance. The OTA output current is determined by the product 
of the differential input voltage and the transconductance 
of the input pair. In this application, the effective OTA 
transconductance is used as the synaptic weight. Although the 
fundamental weighting function (variable transconductance) is 
accomplished through varying the bias current in the input 
pair, a more complicated design is required to allow for a 
more linear voltage to current transfer function. The neuron 
OTA is shown in Fig. 3. The transconductance function here 
is govemed by the gate voltage VGM and the transistor is 
biased in the triode region of operation. This is an example of 
source degeneration to linearize the transconductance. OTAs 
are generally faster and have larger achievable impedances 
(input and output) than more traditional op-amp designs. This 
design successfully balances the need for speed with the 
inherent non-linearity (due to the lack of a feedback loop) 
of OTAs. 

Note that the basic OTA architecture is fully differential, just 
as the ETANNTM. This gives very good immunity to noise, but 
it also offers another distinct advantage. With the differential 
architecture, we have an inherent inversion, i.e. both positive 
and negative output are available, thereby allowing us to build 
a neural network with only one amplifier per neuron since 
we have a positive and a negative output. Next, we can do 
away with the virtual ground amplifier since the OTA, used 
as a synapse, has a very high output impedance. The common 
mode of the synapse output is regulated by a common mode 
feedback circuit. 

A key advantage of the OTA synapse is the programma- 
bility of the effective resistance. When a resistor is used as 
the synapse, we get voltage-to-current conversion where the 
current gain is 1R .  In an OTA, the transconductance is the 
voltage to current gain and is referred to as the G ,  of the 
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mentation (b) OTA-based implementation. 
Fig. 2 .  Summing input from afferent synapses: (a) A common analog imple- 

OTA. So, the effective resistance of the OTA is l/G,. In the 
basic synapse OTA, shown to the right of the broken line in 
Fig. 1, the voltage-to-current characteristics of the OTA are 
actually quite linear for a reasonable input voltage, provided 
that the transconductance of the input pair is very low. The 
transconductance of a MOSFET, G,, is described by the 
equation: 

where W ,  L and K’ are the channel width, channel length 
and p*C,, of the transistor respectively [ll].  Note that the 
G, is also a function of the bias current Id. This relationship 
can be used to tune the transconductance of the OTA, thereby 
changing the effective value of the synaptic strength. 

On considering OTAs as (variable gain) current sources, it is 
immediate how they can be used to implement the combining 
of activity of a set of afferent synapses. Simply sum the 
currents from the synapses directly into the single, non-critical 
resistor at the input of the post-synaptic neuron [lo]. This is 
indicated in Fig. 2 which shows the standard analog implemen- 
tation of a neuron with n input connections and a “sigmoidal” 
activation function (Fig. 2(a)), and contrasts it with an OTA- 
based implementation (Fig. 2(b)). The functioning of the OTA 
neuron is described in the next section. Note that since the 
OTAs used as synapses have an infinite input impedance (i.e. 
CMOS input devices) they do not resistively load the output 
of the pre-synaptic neurons. This means the output impedance 
of the pre-synaptic neurons does not cause an error. In fact, 
we want this output impedance to be as high as possible to 
simulate a current source. 

The basic idea for the tuning 
of the synapses is shown on the left side of the broken line 
in Fig. 1. This circuit could actually be performed with one 
transistor, but since the current DAC (required for weight 
storage in on-chip SRAM), used for setting the G, via ITUN, 

to use a current mirror in the tuning cell. When an OTA 
synapse cell is chosen for updating by the address generator, 

Synapse Tuning Mechanism 

, was designed with P-channel current sources, it was decided 

the transmission gate (i.e. 8 CMOS switch) in the N-channel 
transistor is turned ‘on’. This effectively connects the transistor 
in a diode connected configuration. A tuning current is then 
forced into the drain of the transistor which is proportional 
to the synaptic strength. This current creates a gate to source 
voltage, V,,, on the transistor where, 

and V, is the threshold voltage of the transistor [ll].  This 
tuning current is then mirrored up to the input pair of the OTA, 
and defines its quiescent bias current, which in tum determines 
the transconductance of the OTA. When the transmission gate 
is turned ‘off, meaning that the tuning loop has gone on to 
tune another synapse, the gate voltage on the transistor is 
maintained by the capacitor connected from its gate to VSS. 
If the capacitor voltage is updated often enough, there will not 
be sufficient leakage to cause the weight value to change. 

B. The OTA Neuron 

The neuron OTAs have the same basic structure as the 
synapse OTAs except that they need their own common mode 
regulation. The neuron OTA schematic is shown in Fig. 3. The 
summing resistor is used to sense the common mode voltage 
at the input of the neuron. This resistive loading is not allowed 
at the output of the neuron since it would kill the voltage gain, 
and hence we would no longer have an integrator function. A 
special common mode sensing circuit has been devised which 
does not resistively load the neuron output. The average of 
the two outputs of each neuron are sensed and compared to 
VAG, which is at mid-supply. The amplifier’s common mode 
is adjusted accordingly. The neuron’s gain is adjusted in a 
similar way that the synapses’ effective resistance is adjusted, 
by modifying the transconductance. But in this application, 
the control is through the gate voltage VGM (on the source 
degeneration transistor) as opposed to the current ITUN used 
in the synapse (see Fig. 1). 

One of the important advantages to using the OTA as the 
neuron, is the integrator function we achieve when we put a 
capacitive load at the output of an OTA. With conventional 
implementations of analog networks, operational amplifiers 
with a sigmoidal transfer function were used as the neurons. 
Yanai and Sawada [ 121 have shown that a neural network using 
integrators as the neurons is a more ideal implementation, 
and that catastrophe of memories occurs for low gain when a 
sigmoidal amplifier is used, yet not with the integrator neurons. 
In the present circuit, the loading at the output of the neurons 
is purely capacitive, since they drive only the inputs of the 
synapse OTAs. This gives the inherent integrator function 
without actually having to put capacitors on the chip. The 
advantages of using the OTA for the synapse are many. It 
may seem at first glance that this structure will consume a 
larger area than the resistor implementation, but as discussed 
earlier, building resistors on a VLSI chip can be very expensive 
in terms of size. The fact that the OTA is a very simple 
amplifier structure means that it can be built in a very small 
area. The layout for a single OTA neuron is shown in Fig. 4. 
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Fig. 3. Schematic of an OTA neuron 
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Fig. 4. Layout of a single OTA neuron 

The total area, after shrink, is about 3400 pm2 which suggests 
the potential for more than 20,000 synapses on a 330 mil x 
330 mil die. In reality, some of the die space would be used 
in routing the interconnects and in the layout for on-chip DSP 
engines and address generators. A conservative estimate would 
be 10,000 neuronslsynapses per die. 

C. Power Requirements 

One important consideration in a VLSI design is power con- 
sumption. In a digital implementation, the power consumption 
is a function of how fast you run the clock. In the analog 
circuit, we are concerned with the power consumption of the 
analog blocks used in the design. In the present OTA design, 

each OTA has a quiescent bias current of two micro amps. 
Thus, in the seven neuron fully-recurrent continuous Hopfield 
circuit considered in the next section, we have 42 synapse 
OTAs and seven neuron OTAs for a total of 49 OTAs. This 
gives a total current consumption of 98 micro-amps. This 
current gives a total convergence time of only a few hundred 
nanoseconds. The power versus speed ratio is very good for 
this architecture, and the speed may be increased further by 
increasing the bias currents in the OTAs. 

111. OTA-BASED NEURAL NETWORKS 

This section deals with the design, implementation and 
analysis of several neural network models using OTAs for 
both synapses and neurons. For our first application of OTA- 
based neural nets (ONNs), we choose a Hopfield network with 
binary neurons and analog weights, since this is a well-known 
model that has been implemented using analog circuitry by 
several groups of researchers. Thus, this case is dealt with in 
detail. An outline of an ONN for the Boltzmann Machine is 
made subsequently. 

A. Implementation of Hopfield Networks 

The principles of the Hopfield network were initially ex- 
plained by J. J. Hopfield in his 1982 seminal paper [13]. 
Originally, the concept was applied only to two-state cells but, 
in 1984, Hopfield extended the idea to networks with neurons 
which had graded, or analog, responses [ 2 ] .  The network 
consists of a number of neurons that are fully- interconnected. 
In the continuous (analog) network, each neuron responds to 
its continuously varying input, ui, by varying its output as a 
continuous, monotonically-increasing function, gi (ui), which 
is usually chosen as the logistic map or the hyperbolic tangent 
function. The asymptotes of the neuron’s response correspond 
to the two stable states of the 1982 model. An analog neuron’s 
state is governed by the continuous summation of the states 
of all other neurons in the network times the connecting 
weight between the current neuron and the other neurons in the 
network plus the delays caused by resistances and capacitances 
of the neurons and the connections. All neurons are updated 
simultaneously in the continuous model, yielding the desired 
speed advantage. Hopfield presented the equation governing a 
neuron’s output evolution as 

Ci(du;/d,) = WijSj - ui/Ri + Ii; 
j 

Si = tanh(ui), for all i , j .  (3) 

Here, C; is the input capacitance of neuron i, Ri is the effective 
resistance of neuron i including the input resistance of neuron 
i and the parallel resistance of the connection to other neurons, 
the external input to neuron i is given by Ii, the state of neuron 
j is Sj ,  and Wij is the weight of the connection from neuron 
.j to neuron i. 

B. OTA-Based Implementation: Design Considerations 

The OTA circuit shown in Fig. 2(b) is used as the building 
block for the Hopfield network. N of these blocks are used 
with appropriate feedback to form an N-neuron fully recurrent 



network. Fig. 5 shows the s c h e d c  of the seven neuron 
Hopfield network used in simulations. The neuron OTAs are 
the ones on the far right of the schematic. Each such OTA 
feeds back to each row of synapses except its own. This 
is consistent with the fact that the diagonal of the weight 
matrix in a Hopfield network is usually set to 0 for improved 
convergence time. The input to the system is supplied by either 
injecting a differential current into the two lines of each row 
of synapses, or by forcing a voltage there. For our simulations, 
we used current sources. Note that there is only one common 
mode ampwer for each row of synapses. This is possible 
because all the OTA outputs for a given row of synapses are 
the same, so a common voltage can be used for this control. 
The common mode amplifier is a very simple, single stage 
amplifier which is much smaller than one OTA by itself. The 
common mode feedback point is taken at the center point 
of the resistor which performs the summing function of the 
OTA currents for a given row of synapses. There is a small 
switching Circuit at the output of each synapse which consists 
of four small CMOS transmission gates. These switches serve 
the function of detemining whether the weight value for a 
given synapse is positive or negative. If the weight is negative, 
the switch simply connects the positive output of the OTA to 
the negative input of the neuron to which it is connected. 
The capacitor acfoss the summing resistor at the input of each 
ne" serves to create a time constant which determines the 
convergence and response time of the network. 
As stated in Section 2.C, the power versus speed ratio is 

very good forthis architecture, and the speed may be increased 
further by increasing the bias cummts in the OTAs. It should 
be noted however, that the convergence time stated is referring 
to the situation where the input is not lying on a border at the 
same distance between twodiffemnt minima. If the input is the 
same distance fi-om two or more minima, the convergence time 
could take longer depending on the noise level in the system. 
In an ideal system with no noise, the network would simply 
sit at the saddle point and not make a decision. However, even 
thermal noise is sufficient to push the system towards one of 
thelocalminima 

For simulation purposes, the updates are occurring in 4.2 
psec intervals, yet from leakage statistics taken from the 0.8 

micron process, it was determined that the update rate could 
be much longer with no significant degradation of the synapse 
weight voltage. 

A 4-bit DAC was used for simulation purposes, yet an 
increase in the resolution would not be very costly since only 
one DAC is needed for the entire network. An increase in 
the resolution of the DAC would be needed if the number 
of neurons were increased since the required resolution is a 
function of the number of pattems stored which determines 
the range of transconductance values needed in the synapse 
-Y- 

For speed, a current steering method was used which 'steers' 
the current to VSS when it is not being steered into the output 
node. The output current, IDAC. is connected to one of the 
synapse OTAs via the decode logic. Each one of the five input 
NOR gates act as a decoder to select one of the synapses to 
be tuned and connects that OTA to the DAC output. 
The memory used here is a static memory, but a DRAM 

could have just as easily been used. The weight values could 
be generated off chip and loaded into memory, or they could be 
calculated on chip using a DSP engine. The address generator 
is a six-bit counter with only five bits being used. The counter 
resets at a binary value of 2 I ,  and starts over. The reason onl! 
21 addresses are needed instead of 42 (the number of synapses, 
is that the weight matrix is symmetric for a Hopfield network. 
so we can tune two OTAs at a time since we know that one 
synapse will have the same value as its symmetric counterpart. 
The weight value associated with a given address is recalled 
from memory and presented to the inputs to the DAC which 
generates the desired current for tuning. 

One of the main design issues was related to the size of 
the capacitor in the tuning circuit of the OTA. We want the 
capacitor to be as small as possible so that it does not consume 
a large area, but if it is too small, then leakage currents will 
degrade the voltage on the capacitor before it can be updated 
again. Another issue is the clock rate at which we update the 
synapses. There is a finite slew time required for the IDAC to 
charge the storage capacitor defined by the relationship, 

I = Cdv /d t  (4) 

where I is the current through the capacitor and dvldt  is the 
change in capacitor voltage for a given change in time. Since 
an LSB current in the DAC of 1 pA was desired for low power 
consumption, the final capacitor value was chosen to be 1 pF. 
assuming an update time (i.e. the period of the clock) to be 1 
p k .  The timing of the update cycle is not critical with the 
exception that the sampled value in the OTA synapse must be 
taken before the address decoder selects the next memory cell 
and changes the value in the DAC. This only requires that a 
short delay be introduced which guarantees that the synapse 
that was most recently tuned is 'unselected' before the next 
DAC value is loaded. 

C. Simulation Results 

Memory Storage and Retrieval The circuit was simulated 
with an d o g  circuit simulator very similar to SPICE. 
The software, MTIME, is a Motorola proprietary CAD tool. 
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Fig. 6. Speed of convergence for a single stored vector. The output voltages of the seven cells (arranged columnwise) are plotted against time in pSecs. With 
input vector 1 1 1 -1 1 1 presented around 7 pSec, the system converges to the stored vector 1 1 1 -1 1 -1 in about 2.5 pSec. Another input, 
presented around 12 pSec, converges to the closest (reverse) stored state. 

Process cards were supplied by the Motorola process group 
for a 0.8 micron CMOS process. For simulation purposes, 
the system clock which controls the rate of synapse update 
was running at 5 MHz for the first simulation and 1 MHz 
for the second, which gives clock periods of 200 nsec and 
1 psec respectively. The reason for the two different speeds 
is that the first run has only one vector programmed into the 
network. For that run, the accuracy of the program voltage 
stored on the capacitor in the OTA synapse did not need to 
be very high so a small capacitor was used (0.2 pF) along 
with a faster clock rate. The smaller capacitor gave a faster 
slewing time for the update cycle, yet less accuracy due to 
the increased influence of leakage currents. 

Fig. 6 shows the seven neuron outputs for the simulation 
where only one vector was programmed into the network. 
All the voltages seen in the simulation results are differential 
voltages at the output of each neuron. Weight values were 
calculated and programmed into the memory cell by software. 
Prior to seven pSec, the system is just powering up and doing 

the first update of the synaptic weights before the network can 
be supplied with an input. From seven pSec to eight pSec the 
input vector 

11 -1  1 1 1  1 

was input to the network. As expected, the output converged 
to the stored vector which was 

111-111-1.  

The input vector was three hamming distances away from 
the stored vector, yet there were no convergence problems. The 
outputs have all converged to final state by 10.5 pSec, which 
gives a convergence time of about 2.5 pSec. The convergence 
time is related to the bias current determined by the IDAC and 
the gain of the neurons. At 12 pSec to 13 pSec, the pattem 

-11-11-111 



GHOSH et al., OTA-BASED NEURAL NETWORK ARCHITECTURES WITH ON-CHIP TUNING OF SYNAPSES 55 

was input to the system. The output now converges to the 
inverse of the stored pattern 

-1-1-11-1-11. 

As is well known, the complement of a stored pattern is 
also a local minima and the input we presented to the network 
was closer to this inverse vector than it was to the original 
stored vector. 

In the second simulation, three vectors were programmed 
into the network, so a wider range of synapse values was 
required. This required higher accuracy, so a 1 pF capacitor 
was used for charge storage in the synapse with a 1 MHz 
clock rate. This gives an update cycle rate for all the synaptic 
weights of 4.2 psec for the first simulation and 22 psec for 
the second. 

Fig. 7 shows the seven neuron outputs for the case where 
three vectors were stored in the network. Here, the clock is 
running at lMHz, so as can be seen from the output plot the 
simulation starts at 20 psec. The first 20 psec were used for 
startup and initialization of the synaptic weight values, so this 
portion was deleted. The three stored vectors were as follows, 

1 1 1 - 1  1 1 - 1  
-1 1 1  1 - 1  1 1  
-1 -1 1 1 -1 -1 1 

Naturally, the inverse of these three vectors are also local 
minima, so we have a total of six stored vectors. All three 
vectors could be accurately recalled from the network along 
with their inverses. A simulation was run where three inputs 
were presented to the system. Each input was one hamming 
distance away from one of the stored vectors, yet greater than 
one hamming distance away from the other vectors and their 
inverses. The three inputs were, 

1 -1 1 -1 1 1 -1 
-1 1 1 -1 -1 1 1 
-1 -1 1 -1 -1 -1 1 

Refemng back to Fig. 7, from 23 psec to 24 psec, the 
first input was presented to the network. This input was one 
hamming distance away from the first stored vector. The bit 
that was in error, bit two, quickly recovered, but bit three 
started to drift downward. This was the only error seen on the 
system. Another input was given to the system at 27 psec, 
but the bit that was in error after the first input may have 
recovered if the system had been allowed to settle for a longer 
period of time. From 27 psec to 28 psec, the second input 
was presented to the network and the bit ie error, bit four,, 
corrected itself in about 500 nsec. Lastly, the third vector was 
input from 31 psec to 32 psec and again bit four was in error. 
The bit corrected itself in less than 500 nsec and the network 
converged to the third stored pattern. 

D. Implementation of Boltzmann Machines 

The ONN has the capability to be a general purpose 
neural element which is not limited to simply implement- 
ing the Hopfield network. To confirm this, we decided to 

investigate the circuit requirements of using the ONN in a 
traditional Boltzmann Machine network [ 141, which has been 
implemented at Bellcore using analog circuitry [15]. For this 
application, it was determined that storage of the weights might 
best be accomplished through charge storage on a capacitor. 
This capacitor would then control the bias current in the OTA 
which would in effect control the transconductance. Updating 
the weights would require the addition or subtraction of a fixed 
charge packet on the capacitor. A small sense amp would also 
be required to sense the change in sign of the weight. This 
would result in an increase in the basic cell area, but the 
DAC and the memory from the previous architecture could 
be eliminated. 

The logic associated with performing the Boltzmann ma- 
chine is fairly straightforward. For this architecture, two flip 
flops and approximately twelve gates are required per cell 
to perform the entire update procedure including the sign 
determination. This function could also be performed with 
the previous architecture by calculating the new weights and 
updating the memory in real time. However, this would be 
overkill and the hardware should be optimized for the preferred 
application. The noise generator needed for the Boltzmann 
machine could be accomplished by amplifying the device noise 
from a MOSFET with an opamp structure and summing this 
noise directly into the network. At present, we have identified 
the fundamental circuit requirements and begun preliminary 
implementation. 

IV. COMPARISONS WITH ALTERNATE IMPLEMENTATIONS 

A. Floating Gate Synapses and E T A N P M  

The two primary advantages of the ETANNT“ are its 
speed and its application flexibility. ETANNTM exploits the 
“Floating Gate Synapse” idea which can be used in situations 
where the weight values are to be calculated ‘off chip’, and 
then stored in the synapse as an analog value via EEPROMS, 
DAC--capacitor combinations or some other technique [5]. 
This approach is similar to the ideas discussed above, except 
that the analog value is stored on a floating gate, using non- 
volatile memory technology. Essentially, an EEPROM cell is 
used to store the weight connection. After that point, it is 
very similar to the ONN architecture in that the differential 
input voltage is converted to a differential output current. The 
main advantage here is that there is no need for updating the 
charge on the capacitors which hold the connection strength 
as in the other applications. The fundamental limitation of this 
architecture is the fact that it uses an EEPROM cell for the 
analog storage. This is not a problem if a simple Hopfield 
type network is desired, since the weights are calculated and 
programmed and the circuit is used for the function it was 
intended for. But, if a real time learning algorithm were 
desired, such as a back propagation network, or perhaps a 
self-organizing network, the floating gate synapse idea would 
not be possible because of the need to erase the weight 
values as updated values need to be written. This is more 
complicated with an EEPROM cell. However, in the ONN, the 
updating is done as quickly as the refresh, so if the necessary 
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Fig. 7 .  Speed of coovergencx for a 7-neunwr Hopfield nehvork wth 3 stored vectors. The Output voleges of the 7 cells (arranged cdonmwise) p ~ e  

plotted against time in psen. 

hardware to calculate the weight values is implemented on 
the same chip as the analog circuitry, then real time weight 
updates can occur. ~n previous work on the ET ANN^" it 
was shown that the floating gate voltage values could be 
adjusted to an approximate resolution of eight bits. In the ONN 
implementation, which stores the analog value on a capacitor, 
it has been shown that a resolution exceeding 12 bits can be 
achieved, and even then the limitation is only a function of 
noise and leakage currents. 

B. Digital Weight Storage 

In [ 161, Graf and Jackel compare a digital weight storage 
mechanism with analog ones. For digital weight storage, a 
digital to analog converter is (at least conceptually) duplicated 
for every intemnnection, thus making this approach feasible 
only for binary or very low resolution weights. Also, the 
sourcing and sinking of the currents which represent the 
weight values are performed by Merent  type transistors. The 
mismatch between these two types of current sources causes 
an error which can be significant (i.e., > 10%). The analog 

design stores the connection strength as charge packets on two 
capacitors. The circuit multiplies the voltage difference of the 
two capacitors with the input voltage. The biggest advantage 
of the analog circuit as compared to the digital one, is the 
need for only one digital to analog converter. This means the 

only one converter is needed for all the synapses, as long as 
they can be rekshed often enough to prevent discbarging of 
the capacitors which hold the CoMectiOn strengths. 

The analog circuit is not inherently fully differenlial, so it 
is more susceptible to noise as compared to the 0". The 
output is single ended, and the Merential input voltage is the 
difference between the charge stored on the two capacitors. 
'Ihe main drawbackhere is that you needa fully Menmtial 

yet you do not get the advantage of a fully dif€erential synapse. 
So, the neuron must again consist of two amplifiers: one for 
the inhibitory and one for excitatory functions. In the ONN 
architecture, the digital to analog c o n v e r  which stores the 
value on the capacitor need only be single ended, and yet the 
synapse itself is fully Merential. 

resolution of the converter can be haeased dramatically, since 

digital to analog converter to update the CoMectiOn strengths, 



GHOSH er al., OTA-BASED NEURAL NETWORK ARCHITECTURES WITH ON-CHIP TUNING OF SYNAPSES 57 

C. Pulse-Stream Neural Networks 

Pulse stream encoding, first reported in the context of neural 
integration in 1987, is a hybrid approach that attempts to 
blend the merits of analog and digital technology [17], [18]. 
In the pulse-stream architecture, neural states are represented 
as sequences of pulses. This would be similar to pulse code 
modulation or sigma-delta techniques in data converters. The 
analog multiplication is performed under digital control. The 
justification for this hybrid technique points to the advantages 
of the analog and digital circuits. The analog is attractive for 
reasons of compactness, speed, asynchronousness, and lack of 
quantization effects. Also, multiplication in the analog domain 
is much more economical in terms of power and area than a 
digital multiplier. The reasons for generating the pulse stream 
as the final output are that digital signals are much more robust 
against noise, they are easier to transmit across distances, and 
they are fast. 

Pulse stream techniques show great promise and seems to 
exhibit all of the advantages stated by the authors. However, 
the synaptic weights must still be stored somehow as an analog 
signal which would require one of the techniques stated earlier. 
Another major limitation is the need for a voltage controlled 
oscillator (VCO), which could consume a considerable amount 
of space, even though it is only required for the neuron outputs 
and not for each synapse. The VCO also consumes more power 
depending on the average output frequency of the oscillator. 
This is an additional power consumption not seen in the purely 
analog architectures. 

V. CONCLUSION 
In this paper, we have presented an OTA-based neuron capa- 

ble of implementing many neural network types and we have 
contrasted this approach with other existing implementation 
methods. The OTA neural network has been shown to be an 
effective element both in speed and in programmability in 
the case of a Hopfield network. Modifications required for 
implementing other networks were also discussed. Results 
based on our studies indicate that the OTA-based neuron 
promises the advantages inherent in analog implementations 
while overcoming many of its traditional disadvantages. 
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