Learning to Rank with Bregman Divergences and Monotone Retargeting

Sreangsu Acharyya, Oluwasanmi Koyejo and Joydeep Ghosh University of Texas at Austin

Introduction

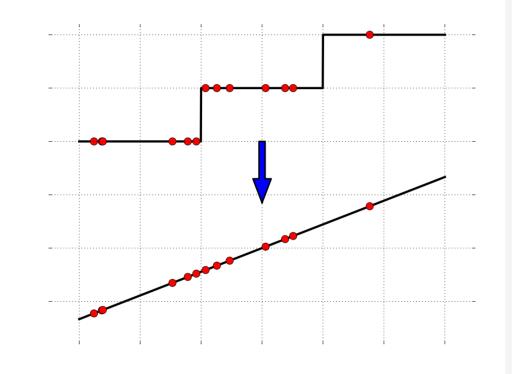
- ▶ Learns to rank-order items (from examples).
- Simple to implement, embarrassingly parallelizable, provably convergent, and attains global minimum under mild conditions.

Problem setup:

- ▶ For every query $q_i \in \mathcal{Q}$, there is a set of ordered items $\mathcal{V}_i \ni \{v_{i,j}\}$.
- ▶ The ordering is specified by a rank score vector $\tilde{\mathbf{r}}_i \in \mathbb{R}^{|\mathcal{V}_i|}$.
- ▶ Row *j* of feature matrix \mathbf{A}_i is computed using the pair $\{q_i, v_{i,j}\}$.

Monotone Retargeting

- Prevalent approach: regress the scores $\tilde{\mathbf{r}}_i$.
- Our main Idea: no need to fit $\tilde{\mathbf{r}}_i$ exactly, sufficient to fit any score that preserves order.
- MR searches for an order preserving transformation of the target scores that may be easier for the regressor to fit.



Bregman Divergence

$$D_{\phi} \Big(\mathbf{x} \Big| \Big| \mathbf{y} \Big) riangleq oldsymbol{\phi}(\mathbf{x}) - oldsymbol{\phi}(\mathbf{y}) - \langle \mathbf{x} - \mathbf{y},
abla \phi(\mathbf{y})
angle$$

- \triangleright Squared L_2 metric, KL Divergence, GLM loglikelihod . . .
- ▶ Unique class of cost functions statistically consistent with the normalized discounted gain (NDCG) [Ravikumar et al., 2011].
- \blacktriangleright We assume ϕ is separable.

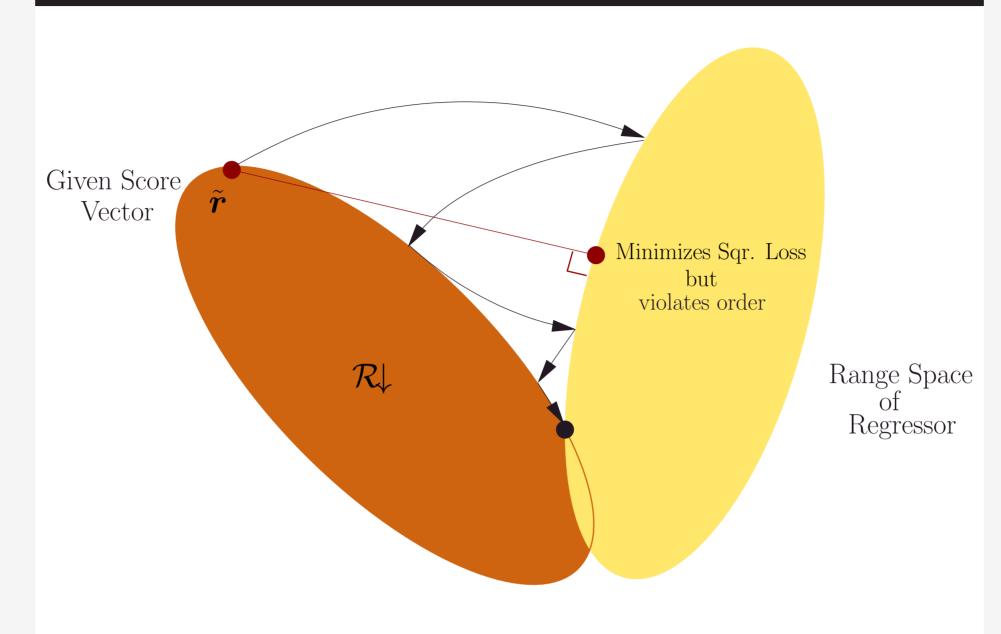
Formulation: Block Coordinate Descent in r and w

$$\min_{\mathbf{w},\mathbf{r}_{i}\in\mathcal{R}\downarrow_{i}\cap\Delta}\sum_{i=1}^{|\mathcal{Q}|}\frac{1}{|\mathcal{V}_{i}|}D_{\phi}\Big(\mathbf{r}_{i}\Big|\Big|(\nabla\phi)^{-1}(\mathbf{A}_{i}\mathbf{w})\Big)+\frac{\mathcal{C}}{2}||\mathbf{w}||^{2},$$
s.t. $\mathcal{R}\downarrow_{i}=\{\mathbf{r}\,|\,\exists\,\mathbf{M}\in\mathcal{M}\text{ s.t. }\mathbf{M}(\tilde{\mathbf{r}}_{i})=\mathbf{r}\},$
 $\mathcal{M}=\text{ the set of all monotonic transformations.}$

- ▶ When $\mathbf{0} \in \text{dom } \phi(\cdot)$, \mathbf{r}_i should be bounded away from $\mathbf{0}$.
- ▶ For such cost functions, we constrain $\mathbf{r}_i \in \Delta_o = \mathcal{R} \downarrow \cap \Delta$.

Lemma: The set Δ_o of all discrete probability distributions of dimension d that are in descending order is the image $T\mathbf{x}$ s.t. $\mathbf{x} \in \Delta$ where T is an upper triangular matrix generated from the vector $\mathbf{v}_{\Delta} = \{1, \frac{1}{2} \cdots \frac{1}{d}\}$ such that $T(i, :) = \{0\}^{i-1} \times \mathbf{v}_{\Delta}(i:)$.

Alternating Projections



Universality of Minimizers

Theorem 1: For $\mathcal{R} \downarrow \subset \mathbb{R}^d$ the set of vectors with descending ordered components, the minimizer $\mathbf{y}^* = \underset{\mathbf{y} \in \mathcal{R} \downarrow}{\operatorname{Argmin}} D_{\phi} \left(\mathbf{x} \, \middle| \, \mathbf{y} \right)$ is independent of $\phi(\cdot)$.

Corollary 2: If dom $\psi(\cdot) = \mathbb{R}^d$ where $\psi(\cdot)$ is the conjugate of $\phi(\cdot)$, then:

$$\mathsf{Argmin}_{\mathbf{r} \in \mathcal{R} \downarrow \cap \mathsf{dom}\, \phi} \, D_\phi \Big(\mathbf{r} \Big| \Big| (
abla \phi)^{-1} (\mathbf{x}) \Big) = (
abla \phi)^{-1} (\mathbf{z}^*),$$

where $\mathbf{z}^* = \operatorname{Argmin}_{\mathbf{z} \in \mathcal{R} \downarrow} ||\mathbf{x} - \mathbf{z}||^2$ (Reduction to squared loss minimization).

Joint Convexity and Global Minimum

The cost function is related to the gap in the Fenchel-Young inequality given by:

$$D_{\phi} \Big(\mathsf{r} \Big| \Big| (
abla \phi)^{-1} (\mathsf{y}) \Big) = (\phi)^* (\mathsf{y}) + \phi (\mathsf{r}) - \langle \mathsf{r}, \mathsf{y}
angle$$

Theorem 3: For any twice differentiable strictly convex $\phi(\cdot)$ with a differentiable conjugate $(\phi)^*(\cdot)$, the gap is jointly convex if and only if $\phi(\mathbf{r}) = c||\mathbf{r}||^2 \ \forall \ c > 0$.

Sufficiency of Sorting

► Here, we assume that the items are totally ordered, though the finer ordering between similar items is not visible to the ranking algorithm.

Theorem 4: If $r_1 \geq r_2$ and $y_1 \geq y_2$, then $D_{\phi}\left(\begin{bmatrix}\mathbf{r}_1\\\mathbf{r}_2\end{bmatrix} \middle| \begin{bmatrix}\mathbf{y}_1\\\mathbf{y}_2\end{bmatrix}\right) \leq D_{\phi}\left(\begin{bmatrix}\mathbf{r}_1\\\mathbf{r}_2\end{bmatrix} \middle| \begin{bmatrix}\mathbf{y}_2\\\mathbf{y}_1\end{bmatrix}\right)$ and $D_{\phi}\left(\begin{bmatrix}\mathbf{y}_1\\\mathbf{y}_2\end{bmatrix}\middle| \begin{bmatrix}\mathbf{r}_1\\\mathbf{r}_2\end{bmatrix}\right) \leq D_{\phi}\left(\begin{bmatrix}\mathbf{y}_2\\\mathbf{y}_1\end{bmatrix}\middle| \begin{bmatrix}\mathbf{r}_1\\\mathbf{r}_2\end{bmatrix}\right)$. (Extend to $\mathbf{r} \in \mathbb{R}^d$ using induction over d.)

► Thus, no need to solve linear assignment problem in an inner loop.

Algorithm for Partially Hidden Order

$$\begin{split} & \mathbb{P}_{i}^{t+1} = \operatorname{Argmin} D_{\phi} \Big(\left. T \mathbf{x}_{i}^{t} \right| \left| (\nabla \phi)^{-1} \left(\mathbb{P} \mathbf{A}_{i} \mathbf{w}^{t} + \beta_{i}^{t} \right) \right) \ \, \forall i \text{ in parallel} \\ & \mathbf{x}_{i}^{t+1} = \operatorname{Argmin} D_{\phi} \Big(\left. T \mathbf{x} \right| \left| (\nabla \phi)^{-1} \left(\mathbb{P}_{i}^{t+1} \mathbf{A}_{i} \mathbf{w}^{t} + \beta_{i}^{t} \right) \right) \ \, \forall i \text{ in parallel} \\ & \mathbf{w}^{t+1} = \operatorname{Argmin} \sum_{\mathbf{i}=1}^{|\mathcal{Q}|} D_{\phi} \Big(\left. T \mathbf{x}_{i}^{t+1} \right| \left| (\nabla \phi)^{-1} \left(\mathbb{P}_{i}^{t+1} \mathbf{A}_{i} \mathbf{w} + \beta_{i}^{t} \right) \right) + \frac{C}{2} ||\mathbf{w}||^{2} \end{split}$$

Experiments

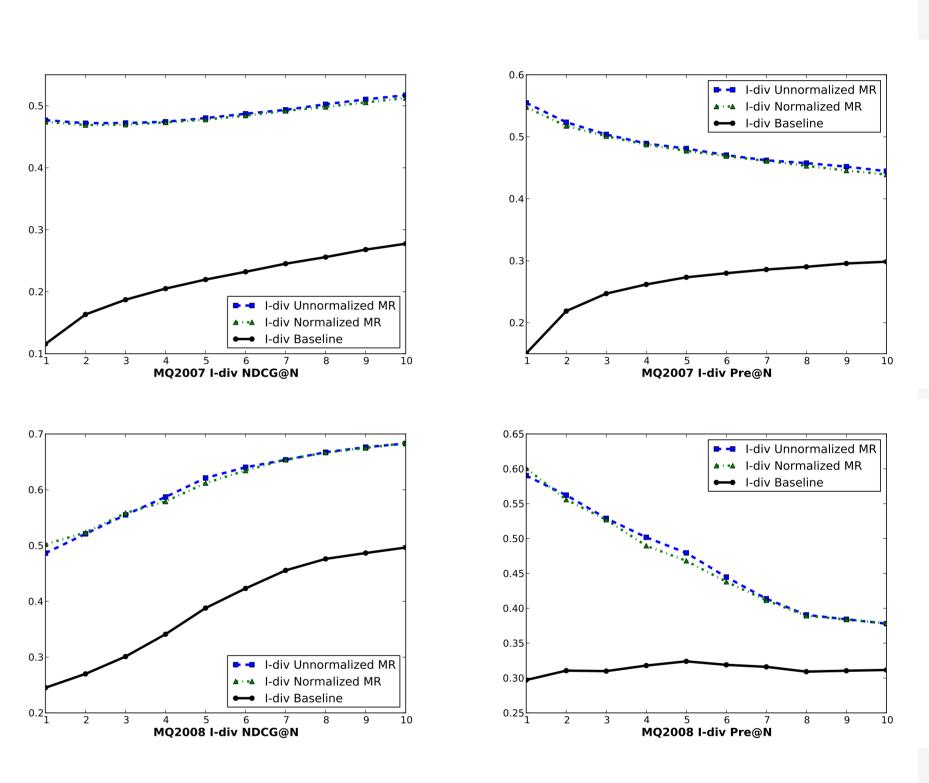


Figure: MR vs. NDCG consistent baseline

► MR improves NDCG performance over baseline algorithms specifically designed for optimizing NDCG.

Conclusion

- ▶ This work introduces a new family of cost functions for ranking.
- Listwise ranking model that can be easily optimized
- MR can globally optimize jointly over
 - regression parameters, and
 - all monotonic transformations
- ▶ MR has favorable statistical and optimization theoretic properties, and excellent empirical performance.