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Introduction

I Learns to rank-order items (from examples).

I Simple to implement, embarrassingly parallelizable, provably convergent,
and attains global minimum under mild conditions.

Problem setup:

I For every query qi ∈ Q, there is a set of ordered items Vi 3 {vi ,j}.
I The ordering is specified by a rank score vector r̃i ∈ R|Vi |.
I Row j of feature matrix Ai is computed using the pair {qi , vi ,j}.

Monotone Retargeting

I Prevalent approach: regress
the scores r̃i .

I Our main Idea: no need to fit
r̃i exactly, sufficient to fit any
score that preserves order.

I MR searches for an order
preserving transformation of
the target scores that may be
easier for the regressor to fit.

Bregman Divergence

Dφ

(
x
∣∣∣∣∣∣y) , φ(x)− φ(y)− 〈x− y,∇φ(y)〉

I Squared L2 metric, KL Divergence, GLM loglikelihod . . .

I Unique class of cost functions statistically consistent with the normalized
discounted gain (NDCG) [Ravikumar et al., 2011].

I We assume φ is separable.

Formulation: Block Coordinate Descent in r and w

min
w,ri∈R↓i∩∆

|Q|∑
i=1

1

|Vi |
Dφ

(
ri

∣∣∣∣∣∣(∇φ)−1 (Aiw)
)

+
C

2
||w||2,

s.t. R↓i = {r | ∃M ∈M s.t. M(r̃i) = r},
M = the set of all monotonic transformations.

I When 0 ∈ domφ(·), ri should be bounded away from 0.

I For such cost functions, we constrain ri ∈ ∆o = R↓ ∩∆.

Lemma: The set ∆o of all discrete probability distributions of dimension d
that are in descending order is the image Tx s.t. x ∈ ∆ where T is an upper
triangular matrix generated from the vector v∆ = {1, 1

2 · · · 1
d} such that

T (i , :) = {0}i−1 × v∆(i :).

Alternating Projections
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r̃
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Universality of Minimizers

Theorem 1: For R↓ ⊂ Rd the set of vectors with descending ordered

components, the minimizer y∗ = Argmin
y∈R↓

Dφ

(
x
∣∣∣∣∣∣y) is independent of φ(·).

Corollary 2: If domψ(·) = R
d where ψ(·) is the conjugate of φ(·), then:

Argminr∈R↓∩domφDφ

(
r
∣∣∣∣∣∣(∇φ)−1(x)

)
= (∇φ)−1(z∗),

where z∗ = Argminz∈R↓ ||x− z||2 (Reduction to squared loss minimization).

Joint Convexity and Global Minimum

The cost function is related to the gap in the Fenchel-Young inequality given by:

Dφ

(
r
∣∣∣∣∣∣(∇φ)−1 (y)

)
= (φ)∗ (y) + φ(r)− 〈r, y〉

Theorem 3: For any twice differentiable strictly convex φ(·) with a
differentiable conjugate (φ)∗ (·), the gap is jointly convex if and only if
φ(r) = c||r||2 ∀ c > 0.

Sufficiency of Sorting

I Here, we assume that the items are totally ordered, though the finer
ordering between similar items is not visible to the ranking algorithm.

Theorem 4: If r1 ≥ r2 and y1 ≥ y2, then Dφ

(
[r1r2]
∣∣∣∣∣∣[y1

y2
]
)
≤ Dφ

(
[r1r2]
∣∣∣∣∣∣[y2

y1
]
)

and

Dφ

(
[y1
y2

]
∣∣∣∣∣∣[r1r2]) ≤ Dφ

(
[y2
y1

]
∣∣∣∣∣∣[r1r2]). (Extend to r ∈ Rd using induction over d .)

I Thus, no need to solve linear assignment problem in an inner loop.

Algorithm for Partially Hidden Order

Pt+1
i = Argmin

P
Dφ

(
Txti

∣∣∣∣∣∣(∇φ)−1 (PAiw
t + βt

i

))
∀i in parallel

xt+1
i = Argmin

x∈∆
Dφ

(
Tx
∣∣∣∣∣∣(∇φ)−1 (Pt+1

i Aiw
t + βt

i

))
∀i in parallel

wt+1 = Argmin
w

|Q|∑
i=1

Dφ

(
Txt+1

i

∣∣∣∣∣∣(∇φ)−1 (Pt+1
i Aiw + βt

i

))
+

C

2
||w||2

Experiments
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Figure: MR vs. NDCG consistent baseline

I MR improves NDCG performance over baseline algorithms specifically
designed for optimizing NDCG.

Conclusion

I This work introduces a new family of cost functions for ranking.

I Listwise ranking model that can be easily optimized
I MR can globally optimize jointly over

I regression parameters, and
I all monotonic transformations

I MR has favorable statistical and optimization theoretic properties, and
excellent empirical performance.
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