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Introduction

» Learns to rank-order items (from examples).

» Simple to implement, embarrassingly parallelizable, provably convergent,
and attains global minimum under mild conditions.

Problem setup:

» For every query g; € Q, there is a set of ordered items V; 3 {v;;}.
» The ordering is specified by a rank score vector f; € RIi.

» Row j of feature matrix A; is computed using the pair {g;, v; }.

Monotone Retargeting

» Prevalent approach: regress
the scores r;.

» Our : no need to fit
r; exactly, sufficient to fit any
score that preserves order.

» MR searches for an
of
the target scores that may be
easier for the regressor to fit.

Bregman Divergence

D (X| ‘y) = o(x) — (y) — (x —y, Vo(y))

» Squared L, metric, KL Divergence, GLM loglikelihod ...

» Unique class of cost functions statistically consistent with the normalized
discounted gain (NDCG) [Ravikumar et al., 2011].

» We assume ¢ is separable.

Formulation: Block Coordinate Descent in r and w
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st. Rl ={r|3IM € M s.t. M(¥;) =r},

M = the set of all monotonic transformations.

> When 0 € dom ¢(-), r; should be bounded away from 0.
» For such cost functions, we constrain r; € A, = R| N A.

Lemma: The set A, of all discrete probability distributions of dimension d
that are in descending order is the image Tx s.t. x € A where T is an upper
triangular matrix generated from the vector va = {1,%---2} such that

T(,:) = {0}1 x va(i o).
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Universality of Minimizers

C RY the set of vectors with descending ordered
‘y) is independent of ¢(-).

Theorem 1: For R

components, the minimizer y* = ArgminD, (x
YER]

Corollary 2: If dom(-) = RY where 1)(-) is the conjugate of ¢(-), then:

Argin, . oo Do (1] | (V6) (X)) = (V) (2"),

where z* = Argmin,cp ||x — z||* ( ).

Joint Convexity and Global Minimum

The cost function is related to the gap in the given by:

Do (r||(V0) " () = (&)" (v) + é(r) — {r,y)

Theorem 3: For any twice differentiable strictly convex ¢(-) with a
differentiable conjugate (¢)" (+), the gap is jointly convex
o(r) = cl||r|]]* ¥V c > 0.

Sufficiency of Sorting

» Here, we assume that the items are totally ordered, though the finer
ordering between similar items is not visible to the ranking algorithm.

Theorem 4: If n > rp, and y; > y», then D¢( 0

Do (1| |[1) < Do (B

1) < Du([2) |31 anc
r ) (Extend to r € RY using induction over d.)

> ThUS,

Algorithm for Partially Hidden Order

P! = Argmin qu(Txf
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Figure: MR vs. NDCG consistent baseline

» MR improves NDCG performance over baseline algorithms specifically
designed for optimizing NDCG.

Conclusion

» This work introduces a new family of cost functions for ranking.

» Listwise ranking model that can be easily optimized
» MR can optimize over

> regression parameters, and
» all monotonic transformations

» MR has favorable statistical and optimization theoretic properties, and
excellent empirical performance.

http://www.ideal.ece.utexas.edu/monotone/




