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Abstract—An artificial neural network (ANN) is proposed to
predict the input impedance of a broadband antenna as a function
of its geometric parameters. The input resistance of the antenna
is first parameterized by a Gaussian model, and the ANN is
constructed to approximate the nonlinear relationship between
the antenna geometry and the model parameters. Introducing
the model simplifies the ANN and decreases the training time.
The reactance of the antenna is then constructed by the Hilbert
transform from the resistance found by the neuromodel. A hybrid
gradient descent and particle swarm optimization method is used
to train the neural network. As an example, an ANN is constructed
for a loop antenna with three tuning arms. The antenna structure
is then optimized for broadband operation via a genetic algorithm
that uses input impedance estimates provided by the trained ANN
in place of brute-force electromagnetic computations. It is found
that the required number of electromagnetic computations in
training the ANN is ten times lower than that needed during the
antenna optimization process, resulting in significant time savings.

Index Terms—Artificial neural network, broadband antenna,
Gaussian model, genetic algorithm, Hilbert transform, particle
swarm optimization.

1. INTRODUCTION

HE design of broadband antennas is a computationally in-
T tensive task, especially when a frequency-domain electro-
magnetic (EM) simulator is used. Moreover, when an optimiza-
tion method such as a genetic algorithm [1] is used in the design
process, the antenna characteristics must be computed for thou-
sands of hypothetical antennas over a broadband of frequencies
in order to evaluate the relative merit of each configuration.

In order to substitute the computationally intensive EM simu-
lation, artificial neural networks (ANNs) [2], [3] have been sug-
gested as attractive alternatives [4]. An ANN can be suitable
for modeling high-dimensional and highly nonlinear problems.
When properly trained with reliable learning data, a neuromodel
is computationally more efficient than an exact EM simulator,
and more accurate than a model based on approximate physics.
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Thus, the neural network approach has been explored in the de-
sign of microwave components and circuits such as microstrip
lines [5], spiral inductors [6], HEMT [7], filters [8], and mixers
[9]. In the antenna community, ANN has been applied to beam-
forming [10] and direction-finding [11] for arrays, as well as to
microstrip antenna design [12]. However, the use of ANN for
very broadband antennas with multiple resonances has not been
extensively researched yet.

Typically, when the ANN is used for antenna design,
the antenna geometry parameters and the frequency are re-
garded as inputs to the ANN, while the output is the antenna
input impedance. This approach has been very successful for
narrow-band antenna design. However, when the ANN is used
in this manner in the broadband case, the number of hidden
units will increase drastically as the number of oscillations in
the impedance versus frequency graph increases. Increasing the
number of hidden units requires longer training time. Further-
more, it can lead to a high chance of reaching a local minimum,
resulting in unsuccessful training. Recently Lebber et al. re-
ported an ANN implementation to predict the antenna gain,
bandwidth, and polarization for a broadband patch antenna
[13]. However, the method does not calculate the impedance
variations over a wide frequency band. This approach cannot
obtain quantities such as number of resonances.

In this paper, we indirectly use a neural network for predicting
the input impedance of a broadband antenna via a parametric
frequency model. The input resistance of the antenna is first pa-
rameterized by a Gaussian model [14]. The Gaussian parame-
ters are then estimated for the different training antennas, and
a neural network is trained to describe the relationship between
the antenna geometry and the Gaussian parameters, as shown in
Fig. 1. By introducing the parametric model, the resulting ANN
operates in a much less complex solution space. This leads to a
smaller network size, faster training time, and more robust con-
vergence of the training process. For the training method, a hy-
brid scheme combining the gradient descent method and a par-
ticle swarm optimization [15] is utilized. Once the network for
the input resistance is in place, the input reactance is generated
by the Hilbert transform [16]. This proposed technique is valid
when the band of interest is broad and the resonant frequencies
of the antenna are distinct.

The resulting neural model is next exploited for antenna op-
timization. In this paper, we use the loop-based broadband an-
tenna structure reported in [17] as an example. The antenna has
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seven geometric parameters: the lengths and heights of its three
rectangular tuning arms and the radius of the antenna wire. The
antenna structure is optimized for broadband operation via a ge-
netic algorithm (GA) that uses the input impedance predicted by
the ANN over a broad frequency range and over the range of an-
tenna geometries being considered by the GA. The performance
of the ANN in terms of accuracy and computational savings is
evaluated in this application against a brute-force electromag-
netic computation.

This paper is organized as follows. Section II presents the
Gaussian model and its parameter estimation. In Section III, the
structure of the neural network is described, and the training
method and their results based on the example broadband an-
tenna are discussed. Section IV presents the optimization of
the antenna using the resulting neural network. Conclusions are
given in Section V.

II. GAUSSIAN-BASED FREQUENCY MODEL FOR
INPUT RESISTANCE

The input impedance of a broadband antenna usually contains
multiple resonances within the band of interest. A direct approx-
imation of this characteristic by a neural network may lead to a
large number of hidden units and is prone to failure. Further-
more, the drastic change in reactance at the resonant frequency
can be difficult for the ANN to learn. In order to simplify the
problem, we embed a suitable physical principle into the net-
work so as to constrain the solution space.

We choose to model the resistance by a sum of Gaussians.
The Gaussian model is simple and relatively insensitive to pa-
rameter errors. Furthermore, modeling only the resistance be-
havior leads to a reduced network size, improved training time,
and better chance of successful training. Once the broadband
resistance is modeled, the reactance can be recovered via the
Hilbert transform. A Gaussian model to approximate the fre-
quency dependent resistance envelope of a symmetric resonator
can be represented as

_ =)

Re(Z(f)) = ch-e( "

) +d. (1)

Here, Z(f) is the impedance function; ag, by, and ¢, are coef-
ficients of the model; and d is a bias.

This Gaussian expansion is naturally encoded as a radial basis
function (RBF) with one input and one output [18]. The coeffi-
cients are searched by the gradient descent method, introducing
one Gaussian at a time in a procedure similar to the resource
allocation network of Platt [19]. It can be shown that, using
this method, the Gaussian will, at every update, move into an
approximation of the previous training step’s Gaussian-target
product. This is exploited to let each basis function settle into
an approximation of a single resonance by ensuring that the ini-
tial width of the Gaussian is large and subtracting from the target
curve each already placed Gaussian. This method consistently
yields good results with a minimal number of Gaussians.
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III. ARTIFICIAL NEURAL NET STRUCTURE

An artificial neural network is next constructed to model the
complex relationship between the antenna geometry and the
Gaussian model parameters. For modeling the antenna geom-
etry, the multilayered perceptron (MLP) is utilized. The MLP is
a known universal approximator and has been extensively used
in microwave applications [20]. The suggested network system
is illustrated in Fig. 1.

A broadband antenna for automobiles, reported earlier in
[17], is considered as an example. It is a loop structure with
three tuning arms as presented in Fig. 2. The structure has seven
geometric parameter variables: the lengths and heights of its
three rectangular tuning arms and the radius of the antenna wire.
The frequency range of interest is in the ultra-high-frequency
(UHF) band from 170 to 650 MHz. The MLP takes the seven
geometric parameters as inputs and produces all of the means,
variances, and amplitudes of the Gaussian model as outputs.
The number of modeled Gaussians is set to six, giving 19 free
parameters to specify the frequency dependency including the
bias.

The MLP consists of an input layer, a hidden layer, and an
output layer. The hyperbolic tangent is employed as an activa-
tion function, and a linear output layer is used. Bias is added to
the input and the hidden layer. Two hundred fifty hidden units
and 19 output units are used, where the 19 outputs represent
the mean, variance, and amplitude for each of the six Gaus-
sians, plus a single number indicating the bias amount. The total
number of weights in the net is 6769. The normalized range of
inputs to the ANN is from 0 to 50, and that of output is from 0
to 500.
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The constructed MLP is trained by three strategies: i) gradient
descent, ii) particle swarm optimization (PSO), and iii) hybrid
gradient descent and PSO. For network training, a data set of
270 antenna configurations is generated and the corresponding
Gaussian parameters are estimated. The numerical electromag-
netic code (NEC) is used for the EM simulation. From the data
set, 135 samples are selected as training data and the remaining
135 are used as validation data. All of the training data are input
into the ANN one after the other, and the cumulative averaged
root mean square (rms) error of the output is regarded as the cost
function.

First, we apply the gradient descent by error back propaga-
tion (EBP) to train the ANN. EBP propagates error backwards
through the network to allow the error derivatives for all weights
to be efficiently computed [21]. When the training is performed,
the rms errors of both the training and validation processes de-
crease with increasing iterations. In the parameter space, the av-
eraged rms error of the training approaches 33.7 and that of the
validation approaches 44.8 after 5000 epochs.

One potential drawback of the gradient descent is that it is
a local search method, and its performance can be strongly
affected by the initial guess. The PSO algorithm has been tried
for training neural networks with good reported performance
for simple networks [22], [23]. Here we implement a PSO to
train the 6769 weights in the net. One hundred particles are
introduced, and they are iterated 150 times. To limit the search
space for the parameters to a physically possible range, the
damping wall is employed [24]. The PSO is initiated with
random numbers and training is performed. The averaged
rms error of training approaches 132.1, and that of validation
approaches 134.2 in the parameter space. Clearly, the PSO
performs poorly in comparison to the gradient descent. We
believe this is due to the very huge parameter space (6769) in
our problem.

To improve the training with the PSO, we also try using the
results of the gradient descent to initialize the PSO. Gradient
descent already finds a relatively good solution, so the PSO is
expected to find a better answer near the gradient descent solu-
tion in the complex cost surface, which may contain many local
minima. The evaluated cost of the PSO with the gradient descent
as initial guess starts at 33.7. However, in order to show how the
particles move close to the given solution, the second best cost
is plotted in Fig. 3 until the PSO finds a better solution than the
gradient descent. After defeating the gradient descent result, the
best cost is selected for the plot. The final averaged rms error of
training is 32.4, and that of validation is 43.5, which are lower
than the errors from the gradient descent. Shown in Fig. 3(b) is
the %rms error of the input resistance as constructed from the
Gaussian model. The final %rms error of training is 16.4%, and
that of validation is 19.1%.

Fig. 4(a) and (b) shows, respectively, a sample from the
training data set and a sample from the validation data set. The
dashed curves are predicted by the ANN, and the solid curves
are the true resistance calculated by NEC. It can be observed
that the resistance from the neural net matches fairly well with
the true value.
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Fig. 3. The error from PSO with the initial guess from gradient descent, (a) the
averaged rms error of parameters and (b) the averaged %rms error of resistance.

IV. BROADBAND ANTENNA OPTIMIZATION USING ANN

The performance of the trained ANN is evaluated through
an antenna optimization process. A GA is used to optimize the
considered broadband antenna structure. In the process of the
GA, the antenna impedances are generated by the trained ANN
rather than by an EM simulator, as depicted in Fig. 5. The resis-
tance is calculated using the trained neural network, and the re-
actance is derived from the Hilbert transform. The three lengths
and three widths of the tuning arms and the wire radius are opti-
mized within a 50 by 50 cm? area. The cost function of the GA is
defined as the average voltage standing-wave ratio (VSWR) in
the frequency range from 170 to 220 and from 470 to 650 MHz
to cover UHF analog television and digital video broadcasting.
Each generation of the GA consists of 100 chromosomes, and
the replacement rate and the mutation rate are 70% and 5%,
respectively [17].

The broadband antenna is optimized after 31 iterations. The
best cost function in the GA process using the trained ANN is
1.6. The heights and widths of the side arms of the optimized
antenna are 35.4 by 12.0 cm?, 28.4 by 5.6 cm?, and 12.6 by
12.8 cm, and the wire radius is 0.49 mm. The impedance of
the resulting antenna from the ANN is plotted against the exact
impedance calculated by NEC for the same optimized geometry
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Fig. 4. Prediction of resistance by the ANN: (a) %rms error = 13.14% and
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in Fig. 6. The ANN result agrees fairly well with the NEC calcu-
lation. Their corresponding VSWR curves are plotted in Fig. 7.
The dashed curve is the “GA with ANN” result and the solid
curve is the true VSWR of the optimized design as calculated
by NEC. The averaged VSWR as computed by NEC is 1.63 in
the band of interest (the unshaded regions in the plot).

In order to gauge the performance of the developed ANN,
the considered antenna is optimized again by the GA, this time
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using brute-force calculations by NEC for all the cost function
evaluations. The GA converges after 29 iterations. The best cost
in the optimization process is 1.64. Due to the difference in the
exact NEC calculation and the ANN prediction, the GA this
time converges to a slightly higher optimized cost and a different
optimized antenna configuration. In Fig. 7, we plot the VSWR
of this optimized antenna configuration as the dotted curve. We
observe that the performance of the “GA with NEC” antenna is
comparable to that of the “GA with ANN” antenna.

Note that during the GA optimization using the brute-force
approach, the NEC simulation must be carried out for all 2900
different antenna geometries. Using the developed neural net-
work, however, NEC is employed only 270 times for the gener-
ation of the training and validation data sets. This is a 10.7-fold
reduction in the number of EM calculations as compared to the
brute-force method.

As another example, we optimize the antenna again using
the ANN in a different frequency band from 320 to 650 MHz.
The averaged VSWR of the final converged design is 1.66 as
predicted by the ANN and 1.72 as calculated by NEC. The GA
optimization is also done via brute force using NEC for all the
EM calculations. The averaged VSWR of the final converged
design is 1.62. In this case, the reduction in the number of EM
calculations is found to be 11.8.
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V. CONCLUSION

In this paper, an ANN-based system has been proposed to
predict the input impedance of a broadband antenna. The input
resistance of the antenna was first parameterized by a Gaussian
model over a broad band of frequencies and the ANN was then
constructed to approximate the nonlinear relationship between
the antenna geometry and the model parameters. Introducing
the model simplified the construction and training of the ANN,
resulting in robust performance. The neural network was
trained by using particle swarm optimization as a local search
procedure seeded with an initial guess from the gradient descent
learning. The reactance of the antenna was then constructed by
the Hilbert transform. To test the performance of the resulting
ANN, a loop antenna with multiple tuning arms was optimized
by a GA, whereby the developed ANN system was used for
the cost function evaluations. The performance of the ANN
was compared with that of a direct approach, in which the cost
function evaluation was done using the EM simulator. It was
found that the ANN approach led to a tenfold reduction in
the number of required EM simulations and was still able to
maintain an acceptable level of accuracy. This indicates that a
parametric frequency model used in conjunction with an ANN
forms an effective framework for the design and evaluation of
very broadband antennas. While the Gaussian model is found
to perform adequately, other frequency models such as the
rational function model may lead to even better performance.
This topic is currently under investigation.
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