
ISMIR 2008 – Session 3a – Content-Based Retrieval, Categorization and Similarity 1

A TEXT RETRIEVAL APPROACH TO CONTENT-BASED AUDIO
RETRIEVAL

Matthew Riley
University of Texas at Austin

mriley@gmail.com

Eric Heinen
University of Texas at Austin

eheinen@mail.utexas.edu

Joydeep Ghosh
University of Texas at Austin

ghosh@ece.utexas.edu

ABSTRACT

This paper presents a novel approach to robust, content-

based retrieval of digital music. We formulate the hash-

ing and retrieval problems analogously to that of text re-

trieval and leverage established results for this unique ap-

plication. Accordingly, songs are represented as a ”Bag-

of-Audio-Words” and similarity calculations follow directly

from the well-known Vector Space model [12]. We evaluate

our system on a 4000 song data set to demonstrate its prac-

tical applicability, and evaluation shows our technique to be

robust to a variety of signal distortions. Most interestingly,

the system is capable of matching studio recordings to live

recordings of the same song with high accuracy.

1 INTRODUCTION

Large digital music libraries are becoming commonplace on

consumer computer systems, and with their growth our abil-

ity to automatically analyze and interpret their content has

become increasingly important. The ability to find acousti-

cally similar, or even duplicate, songs within a large audio

database is a particularly important task with numerous po-

tential applications. For example, an automated system sim-

ilar to MusicBrainz [11] might organize a user’s music col-

lection by properly naming each file according to artist and

song title. Another application could attempt to retrieve the

artist and title of a song given a short clip recorded from a

radio broadcast or perhaps even hummed into a microphone.

Due to the rich feature set of digital audio, a central task

in this process is that of extracting a representative audio fin-

gerprint that describes the acoustic content of each song. We

hope to extract from each song a feature vector that is both

highly discriminative between different songs and robust to

common distortions that may be present in different copies

of the same source song. With the multitude of compres-

sion formats and signal extraction processes, two copies of

the same song can sound perceptually identical while hav-

ing very different digital representations. Additionally, it is

desirable for the audio fingerprint to compress the existing

audio information into a much smaller representation, thus

enabling efficient retrieval and requiring less storage than

that of the initial data set.

In this paper, we present a novel hashing methodology

that satisfies these constraints. We show that a technique

based on methods for text retrieval performs well for the

desired applications, and benefits from established research

results in the area. Section 2 reviews existing work related

to our application and section 3 details our application of

the text retrieval techniques to content-based audio retrieval.

Section 4 details our experimental evaluation of the pro-

posed algorithm. Section 5 discusses practical implemen-

tation considerations and section 6 concludes with final re-

marks and suggestions for future work.

2 RELATED WORK

The problem of audio fingerprinting has been studied widely.

In 2002, Haitsma and Kalker proposed a method for ex-

tracting audio fingerprints that they showed were robust to

a variety of signal distortions. In addition, they outlined a

database searching algorithm for locating a fingerprint most

similar to a given target fingerprint [7]. One of the draw-

backs of their system is the amount of memory required

to store an audio fingerprint (approx. 100 KBytes for a 5

minute song). In addition, it was unclear whether or not

their fingerprints could feasibly be used to match a studio

recording to a live performance or a cover version (i.e. a

performance of the original composition by another artist,

possibly rearranged).

Existing work on cover song detection was presented for

a competition at The Music Information Retrieval Evalua-

tion eXchange (MIREX). In 2006, Dan Ellis’ team from

Columbia University won the competition by posting ac-

curacy of about 60% using a method that computed sim-

ilarities between songs by cross-correlating sequences of

their so-called Chroma features [5]. Their similarity mea-

sure is equally applicable to the problem of matching a stu-

dio recording to a live performance. However, the high com-

putational complexity of cross-correlating Chroma feature

vector sequences does not make sense in an audio retrieval

context.

We have not found previous research that directly applies

text retrieval methods to the task of audio retrieval, but a

similar approach has been taken for Object Recognition in

images [13]. Further, Casey and Slaney [3] present a system

295

ISMIR 2008 – Session 3a – Content-Based Retrieval, Categorization and Similarity 1

����������	
��
����
���	�
� ���	����������
�������	�
�

�������
���
�	���	�
�

�	��������
��
������	�
�

Digital Audio
Bag-of-Audio-Words

Representation

Figure 1. Block diagram for ”Bag-of-Audio-Words” Representation

for discovering derivative audio works and describe a local-

ity sensitive hashing procedure for matching similar songs

that is derived from the ”text shingles” method originally

proposed in [2]. Finally, A vector quantization scheme sim-

ilar to ours but using self-organizing maps is described in

[14].

3 BAG-OF-AUDIO-WORDS REPRESENTATION

Our basic framework for extracting a song’s Bag-of- Audio-

Words representation is depicted in Figure 1. First, the song

is converted from its original digital audio format into a

22.05 kHz, 16-bit, mono wav file. Next, the signal is di-

vided into non-overlapping time segments and audio fea-

tures are extracted from each segment. Then, a vector quan-

tization (VQ) technique is used to map audio feature vec-

tors to cluster numbers in the set {1, 2, . . . , k}, where each

cluster corresponds to what we refer to as an audio-word.

Finally, each song is represented by a histogram of audio-

word occurrences.

3.1 Audio Segmentation

In the segmentation process we extract non-overlapping 200

millisecond clips. We originally explored aligning audio

segments to detected beats, which were extracted using the

beat tracking algorithm proposed by Ellis and Poliner [5],

but experimentally determined there to be little difference in

system performance between the segmentation approaches.

Additionally, uniform segmentation has the advantage of re-

quiring less computational complexity.

3.2 Audio Feature Extraction

Several papers have characterized the suitability of numer-

ous audio features for a variety of scenarios [5, 6, 10]. For

our application, we chose the so-called normalized Chroma

feature.

The Chroma feature is a 12-dimensional, real-valued vec-

tor that approximates an audio signal’s strength at each mu-

sical note (e.g. A, A#, B, etc.), regardless of octave. Nor-

malization of a Chroma is then performed by dividing by its

vector norm.

We chose normalized Chroma features because it is very

important to the performance of our audio-word histogram

representations that the feature vectors for an audio seg-

ment and a distorted version are very similar. First, Chroma

features are invariant to types of distortions that affect tim-

bre because they only attempt to capture tonal information.

Second, Chroma features are useful in detecting live/cover

songs because they disregard information about octave, and

are therefore somewhat invariant to certain differences be-

tween renditions or arrangements. Finally, the normaliza-

tion of these Chroma features reduces the effects of a partic-

ular recording’s loudness.

A song’s chromagram is the sequence of the audio seg-

ment’s Chroma features. Example chromagrams, with and

without normalization, for the original and live performance

recordings of the same song are depicted in Figure 2. We

can see here the importance of normalization as the fading

in volume from the original recording does not appear in

the live performance. The normalization of Chroma vectors

helps to eliminate the differences between the chromagrams

of the two renditions.

3.3 Vector Quantization and Song-Level Histograms

Vector quantization primarily consists of performing clus-

tering in the 12-dimensional Chroma space. The clustering

process identifies k dense regions within a set of Chroma

features extracted from our data set, which we collectively

refer to as audio-words. Thereafter, when a Chroma feature

is extracted from a song segment we calculate the nearest

audio-word and consider the segment to be an occurrence of

that audio-word. This quantization procedure forms the ba-

sis of matching distorted signals – song segments that sound

very similar will have slightly different Chroma feature vec-

tors but are expected to be assigned to the same audio-word.

For clustering we first collect a large sample of Chroma

vectors from a variety of songs that are separate from our

test set (approx. 100,000 vectors). We use K-Means to com-

pute the k cluster centers, or audio-words.

The vector quantization procedure takes as input a song’s

sequence of Chroma vectors, and for each outputs one or

more numbers in {1, 2, . . . , k} corresponding to the closest

audio-word(s), as measured by Euclidean distance. Finally,

the song x is mapped to a k-dimensional vector encoding

the frequency of occurrence of each audio-word in the song:

φ(x) = [f1, f2, . . . , fk] where fi denotes the number of oc-

currences of the i-th audio-word in song x.

296

ISMIR 2008 – Session 3a – Content-Based Retrieval, Categorization and Similarity 1

(a) Original Recording (b) Live Recording

Figure 2. Chromagrams (with and without normalization) of the original and live performance of the same song.

Figure 3. Audio-word histograms for the original and live

recordings of Alice in Chains’ ”No Excuses”

By representing individual Chroma vectors by the clus-

ter center to which they belong, we make equivalent in the

histogram representation any segments that were musically

very similar but may have had slightly different Chroma

vectors. In terms of text retrieval, this is analogous to the

stemming procedure often performed on the words of a text

document [9].

3.4 Audio-Word Histogram Term Weighting

After forming the audio-word histograms we weight each

of the k terms according to the term-frequency inverse doc-

ument frequency (TF-IDF) scheme. We determine the term

weightings ti, i ∈ {1, 2, . . . , k}, according to the following

equation [1]:

ti =
nid

nd
log

N

ni
(1)

Here nid is the number of times the feature i occurs in

song d, nd is the total number of features in song d, N is the

total number of songs in the database, and ni is the number

of songs in which feature i is present. The log term is larger

for features that occur in few songs (rare features) and the

leading term is large for features that occur many times in a

given song. The nd term serves to normalize the weights so

that songs with many features can match songs with fewer

features.

3.5 Calculating Song Similarity

Three different measures were considered and tested for com-

puting the similarity between chord-histograms. We con-

sidered Cosine Similarity, Chi-Squared Similarity, and Eu-

clidean distance (with normalization), given in equations

(2), (3), and (4) respectively. In each of these equations, A
and B represent the k-dimensional histogram vectors φ(a)
and φ(b) of songs a and b.

simab = cos−1

(
A ·B

||A|| ||B||

)
(2)

simab =
1
2

k∑
i=1

(Ai −Bi)2

Ai + Bi
(3)

simab =

√√√√ k∑
i=1

(
Ai

|A| −
Bi

|B|

)2

(4)

For each of these similarity measures, a smaller value in-

dicates a better song match. The cosine similarity measure

helps when calculating the similarity between two songs

without TF-IDF weightings because the dot product is nor-

malized by the vector magnitudes, thus allowing songs of

297

ISMIR 2008 – Session 3a – Content-Based Retrieval, Categorization and Similarity 1

different lengths to be similar. Analogously to a typical in-

ternet search engine query, given a query song or song clip,

we use this similarity measure to return a ranked list of sim-

ilar songs from the database. For our application we use

the original WAV of the studio recording of a song as the

query and expect the top results returned to be the distorted

versions of the same song.

4 EXPERIMENTAL EVALUATION

We evaluated our system on a data set of 4000 songs drawn

randomly from a variety of musical genres. A 4000 song

data set under mp3 compression is roughly 40 gigabytes in

size, which, if we use the size of current portable mp3 play-

ers as a guide, is a generous estimation of the size of a ran-

dom user’s music collection. In addition to the base 4000

tracks, we selected 60 additional tracks as query songs and

quantify the system’s ability to correctly retrieve distorted

versions of the tracks from within the 4060 total song set.

The idea here is to determine the discriminative power of

the song-level feature vectors in a practical setting.

4.1 Vector Quantization

We experimented with several types of clustering algorithms

besides K-Means, including hierarchical agglomerative clus-

tering (HAC) and Gaussian mixture modeling (GMM) with

expectation maximization. However, most of these other

clustering algorithms involved greater computational com-

plexity without improving the VQ and resulting song match-

ing. We determined experimentally that k = 500 works

well. Figure 4 depicts the Chroma vectors belonging to four

different, and shows how some of the clusters resemble mu-

sical chords with two to three significant notes (lighter color

indicates greater signal strength).

In addition, we determined experimentally that our match-

ing performance could be improved by modifying the way

in which we built our audio-word histograms. Instead of

assigning a Chroma vector to the single closest cluster cen-

ter, we assigned each one to the three closest centroids. We

also tried some other soft assignment techniques. For ex-

ample, instead of simply adding 1 to a Chroma’s assigned

histogram bins, we tried adding values weighted by how

close the Chroma was to the cluster center. However, this

approach actually hurt our results, especially in the case of

identifying live/cover songs.

4.2 Robustness to Signal Distortion

The main experiment we performed in order to evaluate our

Bag-of-Audio-Words song representation is as follows. First,

we computed audio-word histograms for each of our 4060

songs. We then applied a signal distortion (overdrive, echo,

etc.) using Adobe Audition to each of the 60 query songs,

Figure 4. Four example clusters showing chord structure.

(C major, C minor, D minor, D# power chord)

Similarity Measure
Distortion Type Chi-Sq Cosine Euclidean

Overdrive 100% 100% 100%

Echo 98.3% 98.3% 98.3%

Reverb 100% 100% 100%

Speedup (1%) 98.3% 98.3% 98.3%

mp3 (32 Kbps) 100% 100% 100%

Live/Cover 67.8% 50.8% 50.8%

Table 1. Retrieval results

and computed the audio-word histograms for those distorted

versions. Next, we computed our three similarity measures

between each of the 4120 audio-word histograms. Finally,

we calculated, for each similarity measure, the percentage

at which the distorted query songs were most similar to the

original query songs. Our results are outlined in Table 1.

4.3 Live/Cover Song Identification

In addition to facilitating matching between original and dis-

torted recordings, our audio-word histogram representation

was found to be useful in matching original studio record-

ings with live performances and cover songs to a lesser de-

gree. To test this type of matching, we performed the same

procedure as described in the previous section, but used a

different set of 59 query songs for which we had live/cover

versions (only a quarter of these were actually covers).

The results of this test are given in Table 1. It is some-

what surprising how good our live/cover song detection re-

sults were when compared to low-bitrate mp3 compression.

In addition, it is interesting to note that our audio-word his-

tograms were used to correctly match several cover songs.

298

ISMIR 2008 – Session 3a – Content-Based Retrieval, Categorization and Similarity 1

Figure 5. Similarity matrix for live performance retrieval.

For example, we correctly matched Stevie Ray Vaughn’s

cover version of ”Little Wing” (6:49) to the original by Jimi

Hendrix (2:24). The cover version is significantly longer

and includes a much longer guitar solo.

Figure 5 shows a cosine similarity matrix for the query

songs and their live/cover versions. In this matrix, a song

at an odd index represents an original query song, and the

song at the following even index is the live/cover version.

If you look closely at this figure, you can see dark 2x2

squares along the diagonal, indicating that the original and

live/cover versions have high similarity measures.

In addition to testing live/cover song retrieval from within

a 4060 total song-set, we performed some other tests in the

framework used by Ellis and Poliner [5]. Their procedure

is as follows. First, they collected a set of approximately

80 original songs, and a separate set of cover versions of

those 80. Then, their goal was to match a given song in the

set of originals to its corresponding cover in the other set.

For their 80 songs, they had a matching accuracy of around

60%. When we tested our matching algorithm on these same

songs and in their framework, we only achieved an accuracy

of 37.5% (using chi-squared similarity).

We then repeated the same procedure using our 59 songs,

and the performance achieved by Ellis and Poliner’s match-

ing scheme was 70%, whereas our algorithm gave 90%.

Our explanation for these surprising results is the follow-

ing. Suppose we consider a cover song whose arrangement

is such that every E minor chord (E, G, B) from the origi-

nal version is replaced by an E power chord (E, B). In the

case where song matching is based on chromagram cross-

correlations, the matching between original and cover will

be affected but not significantly. Under our scheme, these

two chords would result in Chroma vectors that would map

to different audio-word bins. Thus, our audio-word his-

togram representation can effectively be used to identify live

song performances, but perform poorly on cover songs whose

arrangements are significantly different from the original.

5 IMPLEMENTATION CONSIDERATIONS

Scalability was a central concern in the design of our pro-

posed system. Here we discuss two implementation consid-

erations – the Inverted Index and Locality Sensitive Hashing

– that extend naturally to our application, and indicate that

our algorithm will scale well to very large data sets.

5.1 Query Processing with an Inverted Index

The Inverted Index data structure is critical to the rapid pro-

cessing speed of many text retrieval systems. This index

contains all words in the text corpus and with each stores a

list of every document in which that word is present. When

performing a retrieval operation, the system looks at the in-

verted index to quickly retrieve a list of documents contain-

ing one or more of the words present in the query. When

using the cosine similarity metric, only the words present in

the query will affect the similarity measure, so documents

not returned by a lookup in the inverted index can be safely

ignored. In practice, this usually results a dramatic perfor-

mance increase because the computationally expensive sim-

ilarity metric must only be computed on a small subset of

the entire database. Analogously, an Inverted Index for our

application would contain each audio word and with each

store a list of every song in which that word is present. This

would be especially useful for an application in which only

a short clip of a song is used to query the system.

5.2 Fast Search with Locality Senstive Hashing

The task of nearest-neighbor calculation in high-dimensional

data can be efficiently implemented using Locality Sensi-

tive Hashing (LSH). LSH is a hashing technique in which

the probability that two objects are hashed to the same bin

is proportional their similarity according to some metric.

Hence, songs with very similar song-level histograms will

likely be hashed to the same bin, allowing sub-linear deter-

mination of the nearest-neighbor of a given song within the

data set, and therefore very rapid retrieval. LSH techniques

exist for a number of similarity measures, including cosine

similarity [4] and euclidean distance [8].

6 CONCLUSIONS

We have shown that a Bag-of-Audio-Words approach to au-

dio retrieval can be both discriminative in a large data set

299

ISMIR 2008 – Session 3a – Content-Based Retrieval, Categorization and Similarity 1

and robust to common signal distortions. We have also dis-

cussed numerous considerations for the practical application

of our approach, addressing issues of scalability and effi-

ciency. Excellent retrieval accuracy for a wide variety of

distortions indicates that our approach will be useful for nu-

merous applications. A natural extension of this work would

be to add temporal information into the song-level feature

vectors. Presently, the Bag-of-Audio-Words approach ig-

nores all time-series information present in the initial song.

Perhaps augmenting the song-level vectors to be a pyramid

of audio word histograms, formed at different resolutions of

song division, would lead to even better performance results.

7 REFERENCES

[1] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Informa-
tion Retrieval. Addison-Wesley Longman Publishing,

USA, 1999.

[2] Broder, A.Z., Glassman, S. C., Manasse, M. S. and

Zweig G. “Syntactic clustering of the Web”, Proceed-
ings of the 6th International World Wide Web Confer-
ence, pp. 391-404, 1997.

[3] Casey, M. and Slaney, M. “Song Intersection by Ap-

proximate Nearest Neighbour Retrieval”, Proceedings
of the 7th International Conference on Music Informa-
tion Retrieval, 2006.

[4] Charikar, M. “Similarity Estimation Techniques from

Rounding Algorithms”, ACM Symposium on Theory of
Computing, 2002.

[5] Ellis, D. and Poliner, G. “Identifying Cover Songs

with Chroma Features and Dynamic Programming Beat

Tracking”, Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing, 2007.

[6] Flexer, A., Gouyon, F., Dixon, S. and Widmer, G. “Prob-

abilistic Combination of Features for Music Classifica-

tion”, Proceedings of the 7th International Conference
on Music Information Retrieval, 2006.

[7] Haitsma, J. and Kalker, T. “A Highly Robust Audio

Fingerprinting System”, Proceedings of the 3rd Inter-
national Conference on Music Information Retrieval,
2002.

[8] Indyk, P. and Motwani, R. “Approximate Nearest Neigh-

bors: towards removing the curse of dimensionality”,

Proceedings of the 30th Symposium on Theory of Com-
puting, pp. 604-613, 1998.

[9] Lovins, J. “Development of a stemming algorithm”,

Mechanical Translation and Computational Linguistics,

vol. 11, pp. 22-31, 2006.

[10] Mandel, M. and Ellis, D. “Song-Level Features and Sup-

port Vector Machines for Music Classification”, Pro-
ceedings of the 6th International Conference on Music
Information Retrieval, 2005.

[11] MusicBrainz, http://www.musicbrainz.org

[12] Salton, G., Wong, A. and Yang, C. S. “A Vector Space

Model of Automatic Indexing”, Commun. ACM, Ply-

mouth, USA, 2000.

[13] Sivic, J. and Zisserman, A. “Video Google: A Text Re-

trieval Approach to Object Matching in Videos”, Pro-
ceedings of the International Conference on Computer
Vision, 2003.

[14] Vignoli, F. and Pauws, S. “A Music Retrieval System

Based on User Driven Similarity and Its Evaluation”,

Proceedings of the 6th International Conference on Mu-
sic Information Retrieval, 2005.

300

