
Scalable, Balanced Model-based Clustering∗

Shi Zhong† and Joydeep Ghosh†

Abstract

This paper presents a general framework for adapting

any generative (model-based) clustering algorithm to pro-

vide balanced solutions, i.e., clusters of comparable sizes.

Partitional, model-based clustering algorithms are viewed

as an iterative two-step optimization process—iterative

model re-estimation and sample re-assignment. Instead

of a maximum-likelihood (ML) assignment, a balance-

constrained approach is used for the sample assignment step.

An efficient iterative bipartitioning heuristic is developed to

reduce the computational complexity of this step and make

the balanced sample assignment algorithm scalable to large

datasets. We demonstrate the superiority of this approach

to regular ML clustering on complex data such as arbitrary-

shape 2-D spatial data, high-dimensional text documents,

and EEG time series.

Keywords: model-based clustering, scalable algorithms,

balanced clustering, constrained clustering

1 Introduction

Clustering or segmentation of data is a fundamen-
tal data analysis step that has been widely studied
across multiple disciplines for over 40 years [15]. Cur-
rent clustering methods can be divided into generative
(model-based) approaches [29, 6, 27] and discriminative
(similarity-based) approaches [36, 28, 14]. Paramet-
ric, model-based approaches attempt to learn generative
models from the data, with each model corresponding to
one particular cluster. In similarity-based approaches,
one determines a distance or similarity function between
pairs of data samples, and then groups similar samples
together into clusters. Unfortunately, calculating the
similarities between all pairs of data samples is compu-
tationally inefficient, requiring O(n2) time. So sampling
techniques have been typically employed to scale such
methods to large datasets [13, 4]. In contrast, several
model-based partitional approaches have a complexity
of O(kn), where k is the number of clusters, and are
thus more scalable.

∗Supported in part by an IBM Faculty Partnership Award from
IBM/Tivoli and IBM ACAS.

†Department of Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX 78712

Several real life data mining applications demand
comparably sized segments of the data, irrespective of
whether the natural clusters in the data are of compa-
rable sizes or not [12]. For example, a direct marketing
campaign often starts with segmenting customers into
groups of roughly equal size or equal estimated revenue
generation, (based on market basket analysis, or pur-
chasing behavior at a web site), so that the same num-
ber of sales teams, marketing dollars etc., can be allo-
cated to each segment. In large retail chains, one often
desires product categories/groupings of comparable im-
portance, since subsequent decisions such as shelf/floor
space allocation and product placement are influenced
by the objective of allocating resources proportional to
revenue or gross margins associated with the product
groups [33]. Similarly, in clustering of a large corpus
of documents to generate topic hierarchies, balancing
greatly facilitates navigation by avoiding the genera-
tion of hierarchies that are highly skewed, with uneven
depth in different parts of the “tree” hierarchy or having
widely varying number of documents at the leaf nodes.

In addition to application requirements, balanced
clustering is sometimes also helpful because it tends to
decrease sensitivity to initialization and to avoid out-
lier clusters (highly under-utilized representatives) from
forming, and thus has a beneficial regularizing effect. In
fact, balance is also an important constraint for spectral
graph partitioning algorithms [8, 17, 24], which could
give completely useless results if the objective function
is just the minimum cut instead of a modified minimum
cut that favors balanced clusters.

Unfortunately, k-means type algorithms (including
the soft EM variant [6], and BIRCH [37]) are increas-
ingly prone to yielding imbalanced solutions as the in-
put dimensionality increases. This problem is exacer-
bated when a large (tens or more) number of clusters
are needed, and it is well known that both hard and soft
k-means invariably result in some near-empty clusters in
such scenarios [4, 7].

While not an explicit goal in most clustering for-
mulations, certain approaches such as top-down bisect-
ing k-means [30] tend to give more balanced solutions
than others such as single-link agglomerative clustering.
The most notable type of clustering algorithms in terms
of balanced solutions is graph partitioning [20], but it

needs O(n2) computation just to compute the similar-
ity matrix. Certain online approaches such as frequency
sensitive competitive learning [1] can also be employed
for improving balancing. A generative model based on a
mixture of von Mises-Fisher distributions has been de-
veloped to characterize such approaches for normalized
data [3].

The problem of clustering large scale data under
constraints such as balancing has recently received
attention in the data mining literature [31, 7, 35, 4].
Since balancing is a global property, it is difficult to
obtain near-linear time techniques to achieve this goal
while retaining high cluster quality. Banerjee and
Ghosh [4] proposed a three-step framework for balanced
clustering: sampling, balanced clustering of the sampled
data, and populating the clusters with the remaining
data points in a balanced fashion. This algorithm has
relatively low complexity of O(n log(n)) but relies on
the assumption that the data itself is very balanced
(for the sampling step to work). Bradley, Bennett and
Demiriz [7] developed a constrained version of the k-
means algorithm. They constrained each cluster to be
assigned at least a minimum number of data samples at
each iteration. The cluster assignment subproblem was
formulated as a minimum cost flow problem, which has
a high (O(n3)) complexity.

In this paper, we take a balance-constrained ap-
proach built upon the framework of probabilistic,
model-based clustering [40]. Model based clustering is
very general, and can be used to cluster a wide variety
of data types, from vector data to variable length se-
quences of symbols or numbers [29]. First, a unifying
bipartite graph view is presented for model-based clus-
tering. Then a two-step iterative maximum-likelihood
(ML) optimization process is presented and analyzed for
hard, model-based clustering. The two steps are model
re-estimation step and sample re-assignment step, re-
spectively. We formulate a completely balanced sample
assignment subproblem, solved using a greedy heuris-
tic at each iteration of the process. The heuristic ob-
tains an approximate solution to the subproblem in
O(kn(k + log n)) time. It can be easily generalized to
handle partially balanced assignments and specific per-
centage assignment problems. Finally, we do a post-
processing step of ML clustering in situations where
strict balancing is not required.

There are several motivations behind our approach.
First, probabilistic model-based clustering provides a
principled and general approach to clustering [5]. For
example, the number of clusters may be estimated using
Bayesian model selection, though this is not done in
this paper. Second, the two-step view of partitional
clustering is natural and has been discussed by Kalton,

1λ

2λ

kλ

1o

2o

3o

no

ΩΓ

Figure 1: A bipartite graph view of model-based clustering.

Wagstaff, and Yoo [16]. Finally, the post-processing
refinement is motivated by the observation in [7] that if
the balancing constraint is too strict, then often distant
data points are forceably grouped together leading to
substantial degradation in cluster quality. We observed
than often a slight decrease in the amount of balance
can buy substantial improvements in cluster quality, a
favorable trade-off for many applications.

The organization of this paper is as follows. Sec-
tion 2 presents a general model-based clustering frame-
work, and in particular, analyzes partitional model-
based clustering algorithms. Section 3 presents our bal-
anced clustering algorithm. Section 4 experimentally
investigates the performance of the proposed balanced
approach on synthetic, real text and time-series data.
Finally, section 5 concludes this paper.

2 Model-based clustering

2.1 A unifying bipartite graph view. In this
section, we introduce a unified framework for model-
based clustering algorithms, based on a bipartite graph
view (Fig. 1) of a data set, O, containing n data samples,
{o1, o2, ..., on}, and k clusters, represented by k models
λ1, λ2, ..., λk, respectively. In this paper, we also refer
to λj as the set of parameters associated with the j-
th model and Λ as the set of parameters for all models
(including the model mixture weights introduced in the
next section).

In this view, we have data sample vertices in the
sample space Ω, probabilistic generative model vertices
in the model space Γ, and connections between the two
spaces. Each cluster is represented by a model in Γ,
which usually contains models from a specific family.
The model λj can be viewed as a generalized center of
cluster j. A connection between sample oi and model
λj indicates that the sample oi is being associated with
cluster j. Note that a data sample is not necessarily
assigned to only one cluster even though it is so for hard
clustering. The connection weight wij is log P (oi|λj),

which measures the closeness of sample oi to model λj

(or the “center” of cluster j). We can define the distance
between two models λj and λj′ (i.e. “centers” of cluster
j and j′) as the (empirical) KL divergence

D(λj , λj′) =
1
|Oj |

∑

o∈Oj

(log P (o|λj)− log P (o|λj′)) ,

where Oj is the set of samples partitioned into cluster
j. One can make the distance measure symmetric by
defining Ds(λj , λj′) = 1

2 (D(λj , λj′) + D(λj′ , λj)) . Note
that this definition of inter-cluster distance is just one
example of many possible designs and can be modified
for specific applications.

Having defined a closeness measure between data
samples and models, and a distance measure between
pair of models, generic model-based clustering algo-
rithms can be readily applied. The closeness measure is
used for assigning samples to clusters in partitional clus-
tering and the distance measure for finding the closest
pair of clusters to merge in hierarchical agglomerative
clustering. Readers are referred to [40] for a detailed
description. The maximum-likelihood method is often
used for training a model λ given a set of data samples
O, to maximize P (O|λ), or equivalently, log P (O|λ).
A model-based clustering algorithm usually iteratively
partitions the data samples and trains the models based
on the partitioning, to maximize P (O|Λ). For this rea-
son, we often use maximum-likelihood clustering, or ML
clustering, to refer to model-based clustering in this pa-
per.

2.2 Model-based partitional clustering. The
model-based k-means algorithm (Fig. 2) is a general-
ized version of the standard k-means. Basically, the
algorithm iterates between a model re-estimation step
2a and a sample re-assignment step 2b. The ML assign-
ment is used for the latter step. It can be further ex-
tended to soft EM clustering, where each sample o gets
fractionally assigned to a cluster j according to the pos-
terior probability P (j|o,Λ), and each model is trained
using the posterior probability weighted samples. An
information-theoretic analysis of these two assignment
strategies has been given in [21].

Let us analyze these two algorithms from the per-
spective of objective function and explain why they usu-
ally perform very similarly in practice. The general
log-likelihood objective function to be maximized for
model-based partitional clustering can be written as

log P (O|Λ) =
∑

i

log

∑

j

αijP (oi|λj)

,(2.1)

where Λ = {λj , αij}i=1,...,n,j=1,...,k and αij ’s are the

Algorithm: mk-means

Input: Data samples O = {o1, ..., on}, and model struc-
ture Λ = {λ1, ..., λk}.

Output: Trained models Λ and a partition of the data
samples given by the cluster identity vector Y =
{y1, ...yn}, yi ∈ {1, ..., k} .

Steps:

1. Initialization: initialize the model parameters Λ and
cluster identity vector Y ;

2a. Model re-estimation: for each cluster j, let Oj =
{oi|yi = j}, the parameters of each model λj is re-
estimated as λj = max

λ

∑
o∈Oj

log P (o|λ) ;

2b. Sample re-assignment: for each data sample i, set
yi = arg max

j
log P (oi|λj);

3. Stop if Y does not change or
∑

i
log P (oi|λyi) con-

verges, otherwise go back to Step 2a.

Figure 2: Model-based k-means algorithm.

model mixture weights with constraints
∑

j αij = 1, ∀i.
Applying EM algorithm to maximize (2.1), one can
derive the general re-estimation formula for Λ as follows:

λ
(new)
j = arg max

λ

∑

i

P (j|oi,Λ) log P (oi|λ) ,(2.2)

α
(new)
ij = P (j|oi,Λ) ,(2.3)

P (j|oi, Λ) =
αijP (oi|λj)∑
j′ αij′P (oi|λj′)

.(2.4)

Special choices of αij ’s lead to several commonly
used algorithms. For example, setting αij = I(yi = j)1,
where the cluster identity yi = arg maxj′ log P (oi|λj′),
leads to the mk-means algorithm. Constraining αij ’s
to be independent of individual data samples, i.e αij =
αj , ∀i, results in the EM clustering algorithm. In this
case, the re-estimation of α’s (2.3) needs to be modified
to α

(new)
j = 1

n

∑
i P (j|oi,Λ). Further enforcing that

αj = 1/k, ∀j leads to a more constrained version of soft
clustering [40]. Note that the general formula (2.2) for
re-estimating models need not to be modified no matter
how we set the α’s.

In practice, we often have the condition P (oi|λyi) À
P (oi|λj),∀j 6= yi (especially for complex models such as
HMMs), which means that P (j|oi,Λ) will be dominated
by the likelihood values and be very close to 1 for
j = yi, and 0 otherwise, independent of most choices

1I(.) is an indicator function that takes value 1 when the
predicate argument is true and 0 otherwise.

of α’s. This suggests that the difference between hard
and soft versions is small, i.e. their clustering results
will be fairly similar. As the mk-means has better time
complexity than EM (O(kn) vs. O(k2n)), we focus
on the analysis of mk-means algorithm from this point
onwards.

The objective function of the mk-means algorithm
can be simplified as

log P (O|Λ) =
∑

i

log P (oi|λyi
).(2.5)

Let zij be a binary assignment variable with value 1
indicating assignment of sample i to model j. The mk-
means clustering can be re-formulated as the following
optimization problem

max
λ,z

∑
i,j

zij log P (oi|λj)

s.t.
∑

j zij = 1, ∀i; zij ∈ {0, 1},∀i, j.
(2.6)

Note that the step 2a in Fig. 2 corresponds to training
λj ’s to solve (2.6) with zij ’s fixed, and the step 2b
finding zij ’s to maximize (2.6) with λj ’s fixed. This
observation leads to a decomposition of (2.6) into two
subproblems: a model estimation subproblem (2.7) and
a sample assignment subproblem (2.8).

max
λ

∑

i,j

zij log P (oi|λj).(2.7)

max
z

∑
i,j

zij log P (oi|λj)

s.t.
∑

j zij = 1, ∀i; zij ∈ {0, 1},∀i, j.
(2.8)

As we will see in the next section, this decomposi-
tion greatly facilitates the development and analysis of
a balanced mk-means algorithm. Also note the formu-
lation is generic in that we can plug in any probabilistic
models into the subproblem (2.7) to get an instantiated
clustering algorithm. The convergence of the generic
mk-means algorithm is given by the following theorem.

Theorem 2.1. If P (o|λ) is bounded from above, the
mk-means algorithm given in Fig. 2 will converge to a
local maximum of the objective function in (2.5).

Proof : It is easy to verify that both step 2a and 2b
in Fig. 2 will not decrease the objective function (2.5).
The objective function is upper-bounded since P (o|λ)
is bounded from above. These two conditions complete
the convergence proof. 2

3 Balanced model-based clustering

3.1 Completely balanced mk-means clustering.
The completely balanced mk-means clustering problem

Algorithm: completely balanced mk-means

Input: Data samples O = {o1, ..., on} and model struc-
ture Λ = {λ1, ..., λk} .

Output: Trained models Λ and a partition of data given
by cluster identity vector Y = {y1, ...yn}, yi ∈
{1, ..., k} .

Steps:

1. Initialization: initialize model parameters Λ, cluster
identity vectors Y and zij = I(yi = j) ;

2a. Model re-estimation: let λj ’s be the solution to
problem (2.7);

2b. Sample re-assignment: let z be the solution to
problem (3.10) and set yi = maxj zij ;

3. Stop if Y do not change or
∑

i
log P (oi|λyi) con-

verges, otherwise go back to Step 2a.

Figure 3: Completely balanced mk-means algorithm.

can be defined as:

max
λ,z

∑
i,j

zij log P (oi|λj)

s.t.
∑

j zij = 1, ∀i; ∑
i zij = n/k, ∀j;

zij ∈ {0, 1}, ∀i, j.
(3.9)

If n/k is not an integer, we round it to the closest integer
and make slight changes so that

∑
i,j zij = n holds. This

problem is again decomposed into two subproblems: the
model estimation subproblem is the same as in (2.7),
whereas the balanced sample assignment subproblem
becomes

max
z

∑
i,j

zij log P (oi|λj)

s.t.
∑

j zij = 1, ∀i; ∑
i zij = n/k, ∀j;

zij ∈ {0, 1}, ∀i, j.
(3.10)

Fig. 3 describes a generic completely balanced mk-
means algorithm that solves the problem (3.9). Its
convergence is given by the following theorem.

Theorem 3.1. If P (o|λ) is bounded from above, the al-
gorithm given in Fig. 3 will converge to a local maximum
of the objective function in (3.9).

Proof of this theorem is straightforward and similar to
the proof of Theorem 2.1.

Note that the generic algorithm does not specify
how to solve the balanced sample assignment subprob-
lem (3.10). It is an integer programming problem, which
is NP-hard in general. Fortunately, this integer pro-
gramming problem is special in that it has the same
optimum as its corresponding real relaxation [7], which

Algorithm: iterative greedy bipartitioning

Input: Log-likelihood matrix wij = log P (oi|λj), i =
1, ..., n, j = 1, ..., k .

Output: A partition matrix z that satisfies zij ∈ {0, 1},∑
j
zij = 1,∀i and

∑
i
zij = n

k
, ∀j .

Steps:

1. Initialization: set j′ = 1, J = {1, ..., n} and zij =
0, ∀i, j ;

2. Calculating log-likelihood difference vector: let dvi =
wij′ −max

j>j′
wij ,∀i ∈ J and dv = {dvi}i∈J ;

3. Bipartitioning using sorted difference vector: sort dv
in descending order and assign the top n

k
samples to

cluster j′, i.e. set zij′ = 1,∀i ∈ I, where I is the set
of indices corresponding to the top n

k
samples;

4. Stop if j′ = k, otherwise let j′ = j′ + 1, J = J − I
and go back to Step 2.

Figure 4: Iterative greedy bipartitioning algorithm.

is a linear programming problem. The relaxed optimiza-
tion problem is

max
z

∑
i,j

zij log P (oi|λj)

s.t.
∑

j zij = 1, ∀i; ∑
i zij = n/k, ∀j;

zij ≥ 0, ∀i, j.
(3.11)

The best known exact algorithm to solve this problem
is an improved interior point method that has a com-
plexity of O(n3k3/ log (nk)), according to [2]. The fa-
mous simplex algorithm has exponential worst case time
complexity but often exhibits polynomial expected time
complexity [10, pp.96], which is around O(n3k) in our
case.

To make our clustering algorithm scalable, we seek
approximate solutions to (3.10) that can be obtained
in time better than O(n2). There are a number of
heuristics that can be used, such as the one-to-many
stable matching algorithm, used by Banerjee and Ghosh
[4] to populate balanced clusters (learned from a small
sampled set of data points).An alternative is an iterative
greedy bipartitioning algorithm (Fig. 4) that assigns
n/k data samples to one of the k clusters in a locally
optimal fashion at each iteration. Both heuristics work
well in our preliminary experiments, but we choose the
second one since it fits well within the optimization
problem setting in this paper. The completely balanced
clustering algorithms using this greedy heuristic always
converge in our experiments, though not monotonically.

The motivation behind this heuristic is that it solves
(3.10) exactly for k = 2. In other words, if there

are just two clusters, we simply sort the difference
vector dvi = log P (oi|λ1) − log P (oi|λ2), i = 1, ..., n in
descending order and assign the first n/2 samples to
cluster 1 and the second half to cluster 2. It is easy
to show this gives a {n

2 , n
2 } bipartition that maximizes

(2.5).
For k > 2, we conduct a greedy bipartition at each

iteration that separates the data samples for one cluster
from all the others in such a way that the objective (2.5)
is locally maximized. It is trivial to show that the j-
th iteration of the algorithm in Fig. 4 gives a locally
optimal {n

k , (k−j)n
k } bipartition that assigns n

k samples
to the j-th cluster.

We now look at the time complexity of this algo-
rithm. Let nj = (k+1−j)n

k be the length of the differ-
ence vector computed at the j-th iteration. Calculat-
ing the difference vectors takes

∑
j nj(k − j) ' O(k2n)

time and sorting them takes
∑

j nj log nj ' O(kn log n)
time. The total time complexity for this algorithm is
O(kn(k + log n)). The greedy nature of the algorithm
stems from the imposition of an arbitrary ordering of the
clusters using j′. So one should investigate the effect of
different orderings. In our experiments, the ordering is
done at random in each experiment, multiple experi-
ments are run and the variation in results is inspected.
The results exhibit no abnormally large variations and
suggest that the effect of ordering is small.

The algorithm can be easily generalized to solve
the sample assignment problem with specific balance
constraints. For example, if we have some prior
knowledge about the partition percentages (e.g. a
{20%, 20%, 30%, 30%} partition), we can easily build
the numbers into the algorithm and assign a correspond-
ing number of data samples to each cluster. Or if we
just want each cluster to have at least m(< n

k) samples,
i.e. similar to [7], we can assign just the top m sam-
ples at each iteration and use ML assignment for the
remaining data. This variation may be useful in situa-
tions where “near” balanced clustering is desired, but is
not investigated in this paper.

3.2 Refinement step. This step is really an optional
step, depending on what kind of results are desired. If
approximate rather than exact balanced solutions are
acceptable, then a minor refinement can be used to
improve cluster quality. This is achieved by letting
the results from completely balanced mk-means serve
as an initialization for the regular mk-means. Since the
regular mk-means has relative low complexity of O(kn),
this extra overhead is low. The experiments reported
in this paper reflect a “full” refinement in the sense
that we run the regular mk-means in the refinement
step until convergence. Alternatively, partial refinement

such as one round of ML re-assignment can be used and
is expected to give an intermediate result between the
completely balanced one and the “fully” refined one. In
the experimental results, intermediate results are not
shown but they will be bounded from both sides by the
completely balanced and the “fully” refined results.

3.3 Clustering models used in our experiments.
In this section, we briefly introduce the four generative
models used in our experiments.
K-means
For spherical Gaussian models, we have λ = {µ, σ} and
P (o|λ) = 1

Z(σ) exp−‖o−µ‖2
2σ2 , where Z(σ) is a normaliza-

tion term. For k-means clustering, σ is the same for
all clusters, and the normalized log-likelihood (NLL)
objective is simply:

NLLk−means = − 1
n

n∑

i=1

‖oi − µyi‖2.(3.12)

K-vMFs
Euclidean distance is not appropriate for clustering high
dimensional normalized data such as text [34]. A better
metric used for text clustering is the cosine similarity,
which can be derived from directional statistics — the
von Mises-Fisher distribution [3]. The general vMF
distribution can be written as

P (o|λ) =
1

Z(κ)
exp

(
κ

oT µ

‖µ‖
)

,(3.13)

where o here is a unit-length document vector (in L2

norm) and the Bessel function Z(κ) is a normalization
term. Similar to the k-means algorithm, we assume the
directional variance (dispersion) κ is the same for all
clusters. With some manipulation, we get log P (o|λ) ∝
oT µ
‖µ‖ + C , where C is a constant related to κ. The
generalized k-means using this simplified vMF model
has been named spherical k-means [9] and successfully
used for document clustering. The model estimation for
k-vMFs amounts to µj = 1

|Oj |
∑

oi∈Oj oi, j = 1, ..., k.
The objective function evaluated for this model in our
experiments is

NLLk−vMFs =
1
n

∑

i

oT
i µyi

‖µyi‖
,(3.14)

which is in fact the average cosine similarity of all data
samples and their cluster means.
K-multinomials
Multinomial models have been popular for text clas-
sification (with näıve Bayes assumption) and can be
adapted for clustering.A multinomial model for cluster j

represents a document di by a multinomial distribution
of the words in the document

P (di|λj) = P (cj)
∏

l

P (wl|cj)nl,i ,(3.15)

where P (cj) is the prior probability for cluster j,
P (wl|cj) the probability of word wl occurring in the
cluster j, and nl,i the number of times word wl occurs
in document di. The normalized log-likelihood (NLL)
evaluated for this model in our experiments is

NLLk−multinomials =

1
n

∑

i

(
log P (cyi) +

∑

l

nl,i log P (wl|cyi)

)
.(3.16)

K-HMMs
Hidden Markov models have long been used for mod-
eling sequences [26] and the k-HMMs algorithm has
been used by several authors to cluster time sequences
[29, 22]. The NLL objective used for the k-HMMs al-
gorithm is

NLLk−HMMs =
1
n

∑

i

1
Ti

log P (oi|λyi) ,(3.17)

where Ti is the length of sequence oi. Space prohibits a
detailed introduction to HMMs, which can be found in
[26].

For each of the above models, we compare three
versions of the clustering algorithm in our experi-
ments: a regular version, a balanced version and a bal-
anced+refinement version. For simplicity, the four bal-
anced algorithms are named bk-means, bk-vMFs, bk-
multinomials and bk-HMMs, respectively, and the re-
fined ones are called refined bk-means, refined bk-vMFs,
..., etc. As a reminder, the balanced version generates
completely balanced clustering and the refined version
attaches a post-processing phase to the balanced ver-
sion. Finally, we emphasize that our balanced approach
is built on the general model-based clustering framework
and applies to any application for which appropriate
models exist, for the balance constraint is completely
independent of the model re-estimation part.

4 Clustering results and discussions

4.1 Clustering evaluation. To evaluate the perfor-
mance of our balanced clustering algorithms, we com-
pare them with the regular ML clustering in terms of
balance, objective value and mutual information be-
tween cluster labels and class labels, if they exist. We
measure the balance of a clustering by normalized en-
tropy that is defined as

Nentro = − 1
log k

k∑

j=1

nj

n
log

(nj

n

)
,(4.18)

where nj is the number of data samples in cluster j.
A normalized entropy of 1 means perfectly balanced
clustering and 0 extremely unbalanced clustering. We
use the normalized objectives in (3.12), (3.14), (3.16),
and (3.17) for k-means, k-vMFs, k-multinomials and k-
HMMs, respectively.

For datasets that come with original class labels,
we also evaluate the quality of clustering using the
normalized mutual information [34], which is defined
as

NMI =

∑
h,l nh,l log

(
n·nh,l

nhnl

)
√(∑

h nh log nh

n

) (∑
l nl log nl

n

) ,(4.19)

where nh is the number of data samples in class h, nl

the number of samples in cluster l and nh,l the number
of samples in class h as well as in cluster l. The NMI
value is 1 for a perfect clustering and close to 0 for
a random partitioning. This is a better measure than
purity or entropy which are both biased towards high k
solutions. For a more detailed discussion on the NMI
measure, see [34, 32].

4.2 Results on synthetic data. We first tested the
balanced k-means algorithm on a synthetic but difficult
dataset—the t4 dataset (Fig. 5(c)) included in the
CLUTO toolkit [18]. There are no ground truth labels
for this dataset but there are six natural clusters plus
a lot of noise according to human judgment. The best
algorithm that can identify all the six natural clusters
uses a hybrid partitional-hierarchical approach [19, 18].
It partitions the data into a large number of clusters and
then merges them back to a proper granularity level.

Fig. 5(a) shows the balance results and Fig. 5(b) the
NLL results, for different number of clusters. All the
results are averaged over ten experiments with the bars
at each data point indicating ±1 standard deviation
in ten experiments. The balance performance of reg-
ular k-means deteriorates significantly as the number of
clusters increases. The bk-means algorithm always de-
livers perfectly balanced clusterings but pays in terms
of NLL. In contrast, the refined bk-means approach
achieves very balanced clusterings as well as dramati-
cally better objectives than the regular k-means. In this
case, the refinement step seems to be able to keep the
balance of the clusterings from bk-means and improve
the NLL objective simultaneously.

Fig. 5(c)&(d) show a typical clustering result for
k = 30. It can be seen that the regular k-means pro-
duces many empty clusters and ones that mix data
points from different natural clusters, whereas the re-
fined bk-means gives much cleaner and more balanced
results. Fig. 5(e)&(f) show the histogram distribution

of cluster sizes for the results in Fig. 5(c)&(d). The reg-
ular k-means produces many empty clusters and large
variations in cluster sizes, whereas the refined bk-means
gives much more balanced clusters. In addition, the re-
fined bk-means achieves a much better local solution
(with an NLL of −620.9 vs. −1237.1 for the regular
k-means).

4.3 Results on real text data. We used the 20-
newsgroups (NG20)2, mini 20-newsgroups (mini20),
and the CLASSIC datasets for empirical performance
analysis on text data. The NG20 dataset is a collection
of 20,000 messages, collected from 20 different usenet
newsgroups, 1,000 messages from each. We prepro-
cessed the raw dataset using the Bow toolkit [23], in-
cluding chopping off headers and removing stop words
as well as words that occur in less than three documents.
In the resulting dataset, each document is represented
by a 43,586-dimensional sparse vector and there are a
total of 19,949 documents (with empty documents re-
moved, still around 1,000 per category). The mini20
dataset is a random sample from NG20, with 100 mes-
sages from each category. After the same preprocessing
step, the resulting dataset consists of 1,998 documents
in 10,633 dimensional vector space. This dataset has
been used by Nigam [25] for text classification and is
included in this paper to evaluate the performance of
different models on small document collections. Note
that both NG20 and mini20 datasets contain 20 com-
pletely balanced clusters.

The CLASSIC dataset is contained in the datasets
for the CLUTO software package [18] and has been used
in [38]. It was obtained by combining the CACM, CISI,
CRANFIELD, and MEDLINE abstracts that were used
in the past to evaluate various information retrieval sys-
tems3. CACM consists of 3,203 abstracts from com-
puter systems papers, CISI consists of 1,460 abstracts
from information retrieval papers, MEDLINE consists
of 1,033 abstracts from medical journals, and CRAN-
FIELD consists of 1,398 abstracts from aeronautical sys-
tems papers. The CLASSIC dataset is already prepro-
cessed in CLUTO package and represents each docu-
ment as a 41,681-dimensional sparse vector. The clus-
ters in this dataset are slightly unbalanced, with a nor-
malized entropy of 0.92.

Two types of models, vMFs and multinomials, have
been used for clustering experiments on these three
datasets. For vMF models, we use log(IDF) weighted
(and normalized) document vectors since the weighting
seems to substantially improve clustering results.

2Available from http://kdd.ics.uci.edu/databases/ 20news-
groups/20newsgroups.html.

3Available from ftp://ftp.cs.cornell.edu/pub/smart.

Fig. 6, 7 and 8 show the results on the NG20, mini20
and CLASSIC datasets, respectively, with results for
multinomial models on the left column and those for
vMF models on the right. The first row shows balance
results (normalized entropy), the second row NLL
objectives and the last row NMI values. All results
are shown as average ± 1 standard deviation over 20
experiments.

In all cases, the balanced clustering algorithms,
with refinement, perform either comparably or signif-
icantly better than regular ML clustering in terms of
both NLL and NMI, and provide significantly more
balanced clusterings than the regular methods.

Comparing multinomial models with vMF ones, we
see that the vMF-based algorithms produce much more
balanced clusterings for all datasets, no matter whether
the original dataset is highly balanced or not. In terms
of NMI, k-multinomials and k-vMFs work compara-
bly for large collections (NG20 and CLASSIC, 1,000+
documents per cluster) and k-multinomials tends to be
better for large number of clusters. For small collections
(mini20, 100 documents per cluster), the vMF-based al-
gorithms perform significantly better than multinomial
ones. We suspect the reason is that, the parameter esti-
mation for multinomial models is more sensitive to the
data size than that for vMF models. More experiments
are needed to validate this argument.

4.4 Results on EEG time-series. The EEG data
from the UCI KDD archive (http://kdd.ics.uci.edu)
arose from a large study to examine EEG correlates
of genetic predisposition to alcoholism. There are two
groups of subjects in the study: alcoholic and control.
The data contains measurements, sampled at 256 Hz for
1 second, from 64 electrodes placed on the scalp. We
extracted from the archive a subset called EEG-2 [39],
that contains 20 measurements for two subjects—one
alcoholic and one control, for each type of three stimuli
types, from 2 electrodes (F4, P8). As a result, the EEG-
2 dataset contains 120 data samples and each sample is
a pair of sequences of length 256.

When modeling EEG time series, we set the dimen-
sion of observation vector to be the number of EEG
channels, and use an HMM with bivariate Gaussian
observations and five hidden states. We evaluate the
performance of the regular k-HMMs, bk-HMMs and re-
fined bk-HMMs on the EEG-2 dataset with 6 clusters.
The results are shown in Table 4.4. Similar to what we
have seen from previous experiments, bk-HMMs gener-
ates lower quality clusters than the regular k-HMMs.
But the refined bk-HMMs significantly outperforms the
regular k-HMMs in terms of both balance and NLL
measures, based on t-tests at p = 0.05 level. In addi-

Table 1: Clustering results on EEG-2 with 6 clusters

Nentro NLL NMI

regular
k-HMMs 0.90± 0.05 −113.4± 1.0 0.32± 0.03

bk-HMMs 1.0± 0 −114.2± 1.6 0.31± 0.04

refined
bk-HMMs 0.97± 0.02 −112.4± 0.6 0.33± 0.03

tion, it leads to slightly better NMI values.

5 Concluding remarks

We have presented a general framework for scalable,
balanced model-based clustering that comes from an
analysis of the two-step optimization process embedded
in any model-based partitional clustering algorithm.
The balanced approach is applicable to any domain for
which good probabilistic models exist. We have used an
efficient greedy heuristic to solve the balanced sample
assignment subproblem in O(kn(k + log n)) time, and
employed a refinement phase to improve the quality
of clusters generated by the completely balanced mk-
means algorithm. Finally, we have demonstrated the
superiority of our two-phase clustering algorithms to
regular ML clustering in several diverse applications.

We have focused on hard clustering algorithms in
this paper. It would be interesting to investigate the
extensions to soft clustering. Also, there are several
methods for for estimating the number of clusters in a
model-based clustering framework [11]. The interaction
of balanced clustering and model selection strategies can
be investigated.

We also plan to explore more applications in which
our balanced clustering approach is useful. In hybrid
partitional-hierarchical clustering, an initial balanced
flat partition is often desired as the starting point for
subsequent hierarchical clustering. The experimental
results on the synthetic dataset suggest that our bal-
anced clustering algorithm might serve well for this pur-
pose. Spectral clustering has been a hot area of clus-
tering research and often reduces to using regular k-
means to search for appropriate clusters in the eigen-
space of either the original vector data [17] or the simi-
larity graph constructed from the original data [24]. Our
balanced k-means may be used to replace the regular k-
means and get more balanced and hopefully improved
spectral clustering results.

5 10 15 20 25 30 35 40 45
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

number of clusters (k)

ba
la

nc
e

(n
or

m
al

iz
ed

 e
nt

ro
py

)

regular k−means
bk−means
refined bk−means

5 10 15 20 25 30 35 40 45
−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

number of clusters (k)

no
rm

al
iz

ed
 lo

g−
lik

el
ih

oo
d

(N
LL

, E
q.

 3
.1

2)

regular k−means
bk−means
refined bk−means

(a) (b)

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

(c) (d)

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

min=0, max=919
N

entro
=0.85

NLL=−1237.1

nu
m

be
r

of
 s

am
pl

es
 p

er
 c

lu
st

er

regular k−means

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

min=183, max=375
N

entro
=0.996

NLL=−620.9

refined bk−means

nu
m

be
r

of
 s

am
pl

es
 p

er
 c

lu
st

er

(e) (f)

Figure 5: Results on the t4 dataset: comparison of (a) balance results and (b) NLL results; a typical 30-cluster partition
from (c) regular k-means and (d) refined bk-means; histogram distribution of cluster sizes for (e) regular k-means and (f)
refined bk-means.

5 10 15 20 25 30 35 40 45 50 55
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of clusters (k)

ba
la

nc
e

(n
or

m
al

iz
ed

 e
nt

ro
py

)

regular k−multinomials
bk−multinomials
refined bk−multinomials

5 10 15 20 25 30 35 40 45 50 55
0.94

0.95

0.96

0.97

0.98

0.99

1

number of clusters (k)

ba
la

nc
e

(n
or

m
al

iz
ed

 e
nt

ro
py

)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(a) (b)

5 10 15 20 25 30 35 40 45 50 55
−1005

−1000

−995

−990

−985

−980

−975

number of clusters (k)

no
rm

al
iz

ed
 lo

g−
lik

el
ih

oo
d

(N
LL

, E
q.

 3
.1

3)

regular k−multinomials
bk−multinomials
refined bk−multinomials

5 10 15 20 25 30 35 40 45 50 55
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of clusters (k)

no
rm

al
iz

ed
 lo

g−
lik

el
ih

oo
d

(N
LL

, E
q.

 3
.1

3)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(c) (d)

5 10 15 20 25 30 35 40 45 50 55
0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of clusters (k)

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

regular k−multinomials
bk−multinomials
refined bk−multinomials

5 10 15 20 25 30 35 40 45 50 55
0.3

0.35

0.4

0.45

0.5

0.55

0.6

number of clusters (k)

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(e) (f)

Figure 6: Results on the NG20 dataset: balance results for (a) multinomial models and (b) vMF models; log-likelihood
results for (c) multinomial models and (d) vMF models; mutual information results for (e) multinomial models and (f)
vMF models.

5 10 15 20 25 30 35 40 45 50 55
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

number of clusters (k)

ba
la

nc
e

(n
or

m
al

iz
ed

 e
nt

ro
py

)

regular k−multinomials
bk−multinomials
refined bk−multinomials

5 10 15 20 25 30 35 40 45 50 55
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

number of clusters (k)

ba
la

nc
e

(n
or

m
al

iz
ed

 e
nt

ro
py

)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(a) (b)

5 10 15 20 25 30 35 40 45 50 55
−864

−862

−860

−858

−856

−854

−852

−850

number of clusters (k)

no
rm

al
iz

ed
 lo

g−
lik

el
ih

oo
d

(N
LL

, E
q.

 3
.1

3)

regular k−multinomials
bk−multinomials
refined bk−multinomials

5 10 15 20 25 30 35 40 45 50 55
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of clusters (k)

no
rm

al
iz

ed
 lo

g−
lik

el
ih

oo
d

(N
LL

, E
q.

 3
.1

3)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(c) (d)

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of clusters (k)

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

regular k−multinomials
bk−multinomials
refined bk−multinomials

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

number of clusters (k)

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(e) (f)

Figure 7: Results on the mini20 dataset: balance results for (a) multinomial models and (b) vMF models; log-likelihood
results for (c) multinomial models and (d) vMF models; mutual information results for (e) multinomial models and (f)
vMF models.

3 4 5 6 7 8 9 10 11
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of clusters (k)

ba
la

nc
e

(n
or

m
al

iz
ed

 e
nt

ro
py

)

regular k−multinomials
bk−multinomials
refined bk−multinomials

3 4 5 6 7 8 9 10 11
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

number of clusters (k)

ba
la

nc
e

(n
or

m
al

iz
ed

 e
nt

ro
py

)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(a) (b)

3 4 5 6 7 8 9 10 11
−349

−348

−347

−346

−345

−344

−343

number of clusters (k)

no
rm

al
iz

ed
 lo

g−
lik

el
ih

oo
d

(N
LL

, E
q.

 3
.1

5)

regular k−multinomials
bk−multinomials
refined bk−multinomials

3 4 5 6 7 8 9 10 11
0.65

0.7

0.75

0.8

0.85

0.9

number of clusters (k)

no
rm

al
iz

ed
 lo

g−
lik

el
ih

oo
d

(N
LL

, E
q.

 3
.1

5)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(c) (d)

3 4 5 6 7 8 9 10 11
0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of clusters (k)

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

regular k−multinomials
bk−multinomials
refined bk−multinomials

3 4 5 6 7 8 9 10 11
0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of clusters (k)

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n
(N

M
I)

regular k−vMFs
bk−vMFs
refined bk−vMFs

(e) (f)

Figure 8: Results on the CLASSIC dataset: balance results for (a) multinomial models and (b) vMF models; log-likelihood
results for (c) multinomial models and (d) vMF models; mutual information results for (e) multinomial models and (f)
vMF models.

References

[1] S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E.
Melton. Competitive learning algorithms for vector
quantization. Neural Networks, 3(3):277–290, 1990.

[2] K. M. Anstreicher. Linear programming in
o([n3/ log n]l) operations. SIAM Journal on Op-
timization, 9(4):803–812, 1999.

[3] A. Banerjee and J. Ghosh. Frequency sensitive com-
petitive learning for clustering on high-dimensional hy-
perspheres. In Proc. IEEE Int. Joint Conf. on Neu-
ral Networks, pages 1590–1595, Honolulu, Hawaii, May
2002.

[4] A. Banerjee and J. Ghosh. On scaling up balanced
clustering algorithms. In Proc. 2nd SIAM Int. Conf.
on Data Mining, pages 333–349, Arlington, VA, April
2002.

[5] J. D. Banfield and A. E. Raftery. Model-based Gaus-
sian and non-Gaussian clustering. Biometrics, 49:803–
821, 1993.

[6] J. A. Blimes. A gentle tutorial of the EM algorithm
and its application to parameter estimation for gaussian
mixture and hidden markov models. Technical report,
U. C. Berkeley, April 1998.

[7] P. S. Bradley, K. P. Bennett, and A. Demiriz. Con-
strained k-means clustering. Technical Report MSR-
TR-2000-65, Microsoft Research, 2000.

[8] I. S. Dhillon. Co-clustering documents and words using
bipartite spectral graph partitioning. In Proc. 7th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 269–274, 2001.

[9] I. S. Dhillon and D. S. Modha. Concept decompositions
for large sparse text data using clustering. Machine
Learning, 42(1):143–175, 2001.

[10] S.-C. Fang and S. Puthenpura. Linear Optimization
and Extensions: Theory and Algorithms. Prentice-Hall,
1993.

[11] C. Fraley and A. E. Raftery. How many clusters?
Which clustering method? Answers via model-based
analysis. The Computer Journal, 41(8), 1998.

[12] J. Ghosh. Scalable clustering methods for data mining.
In N. Ye, editor, Handbook of Data Mining, 2002.

[13] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient
clustering algorithm for large databases. In Proc.
SIGMOD, pages 73–84, New York, 1998.

[14] P. Indyk. A sublinear-time approximation scheme for
clustering in metric spaces. In Proceedings of the 40th
Symposium on Foundations of Computer Science, pages
154–159, 1999.

[15] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, New Jersey, 1988.

[16] A. Kalton, K. Wagstaff, and J. Yoo. Generalized clus-
tering, supervised learning, and data assignment. In
Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining, pages 299–304, San Francisco,
CA USA, 2001.

[17] R. Kannan, S. Vempala, and A. Vetta. On clusterings
— good, bad and spectral. In 41st Annual IEEE Symp.

on Foundations of Computer Science (FOCS’00), Re-
dondo Beach, 2000.

[18] G. Karypis. CLUTO - A Clutering Toolkit. Dept. of
Computer Science, University of Minnesota, May 2002.

[19] G. Karypis, E.-H. Han, and V. Kumar. Chameleon:
Hierarchical clustering using dynamic modeling. IEEE
Computer, 32(8):68–75, 1999.

[20] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[21] M. Kearns, Y. Mansour, and A. Y. Ng. An information-
theoretic analysis of hard and soft assignment methods
for clustering. In Proc. 13th Uncertainty in Artificial
Intelligence, pages 282–293, 1997.

[22] C. Li and G. Biswas. Applying the hidden Markov
model methodology for unsupervised learning of tem-
poral data. International Journal of Knowledge-based
Intelligent Engineering Systems, 6(3):152–160, July
2002.

[23] A. K. McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/ mccallum/bow,
1996.

[24] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: analysis and an algorithm. In Advances in
Neural Information Processing Systems, 2001.

[25] K. P. Nigam. Using Unlabeled Data to Improve Text
Classification. PhD thesis, School of Computer Science,
Carnegie Mellon University, May 2001.

[26] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings
of IEEE, 77(2):257–286, 1989.

[27] K. Rose. Deterministic annealing for clustering, com-
pression, classification, regression, and related opti-
mization problems. Proc. IEEE, 86(11):2210–39, 1998.

[28] B. Scholkopf and A. Smola. Learning with Kernels.
MIT Press, 2001.

[29] P. Smyth. Clustering sequences with hidden Markov
models. In M. C. Mozer, M. I. Jordan, and T. Petsche,
editors, Advances in Neural Information Processing
Systems, volume 9, pages 648–654. MIT Press, 1997.

[30] M. Steinbach, G. Karypis, and V. Kumar. A compari-
son of document clustering techniques. In KDD Work-
shop on Text Mining, 2000.

[31] A. Strehl and J. Ghosh. A scalable approach to bal-
anced, high-dimensional clustering of market-baskets.
In Proc. HiPC 2000, volume 1970 of LNCS, pages 525–
536, Bangalore, India, December 2000. Springer.

[32] A. Strehl and J. Ghosh. Cluster ensembles — a knowl-
edge reuse framework for combining partitions. Journal
of Machine Learning Research, 3:583–617, 2002.

[33] A. Strehl and J. Ghosh. Relationship-based clustering
and visualization for high-dimensional data mining.
INFORMS Journal on Computing, 2002.

[34] A. Strehl, J. Ghosh, and R. J. Mooney. Impact of
similarity measures on web-page clustering. In Proc.
AAAI Workshop on AI for Web Search, pages 58–64,

Austin, TX, USA, July 2000. AAAI/MIT Press.
[35] A. K. H. Tung, R. T. Ng, L. V. D. Lakshmanan, and

J. Han. Constrained clustering on large database. In
Proc. 8th Int. Conf. on Database Theory (ICDT’01),
pages 405–419, London, UK, 2001.

[36] V. Vapnik. Statistical Learning Theory. John Wiley,
New York, 1998.

[37] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In SIGMOD Rec. 25, volume 2, pages 103–
114, 1996.

[38] Y. Zhao and G. Karypis. Criterion functions for doc-
ument clustering: experiments and analysis. Technical
Report #01-40, Department of Computer Science, Uni-
versity of Minnesota, November 2001.

[39] S. Zhong and J. Ghosh. HMMs and coupled HMMs
for multi-channel EEG classification. In Proc. IEEE
Int. Joint Conf. on Neural Networks, pages 1154–1159,
Honolulu, Hawaii, May 2002.

[40] S. Zhong and J. Ghosh. A unified framework for model-
based clustering and its applications to clustering time
sequences. Technical report, ECE Dept., The Univer-
sity of Texas at Austin, May 2002.

