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Abstract

The estimation of affinity relationships between sets of entities can be aided by a variety of avail-
able sources of auxiliary information about these entities. Estimating the unknown affinity values
given a few known values forms an important class of problems in data mining. This paper intro-
duces a class of Bayesian mixture models - Side Information Aware Bayesian Affinity Estimation
(SABAE), that efficiently exploits all the available sources of information within a common frame-
work to predict affinity relationships. In particular, the models relate multiple information sources
such as available past affinities, independent entity attributes (covariates), and/or a neighborhood
structure over entities (e.g. a social network), to accurately predict missing affinities between each
entity pair.

Utilizing side information allows seamless handling of both warm-start and cold-start within
a single framework - affinities for previously unseen entities can be estimated using the auxiliary
information associated with these ‘new’ entities. We further embed a factorized representation of
affinities in SABAE to leverage the predictive power of matrix factorization based approaches. The
resulting ‘factorization aware Bayesian affinity estimation’ helps to achieve superior predictive ca-
pability. A Bayesian approach further allows us to infer the missing side information for the entities
conditioned on the available affinities along with other auxiliary information. In particular, we
show how missing entity attributes can be estimated within the SABAE framework. The estimated
attributes can then be leveraged for future affinity predictions.

Exploiting multiple sources of information entails the well-known feature selection problem. In
this paper, we extend the SABAE framework for learning sparse homogeneous decompositions of
the input affinity space that allows efficient feature selection from multiple available sources. Fur-
ther, we provide efficient generative models for model selection among choices at varying resolu-
tions. This joint feature and model selection framework results in more interpretable and actionable
models.

An important property of several datasets describing affinity relationships is that the available
affinities are often recorded in a self-selecting manner. We incorporate this self-selecting property
into SABAE by explicitly modeling the probability of observing an affinity between pairs of enti-
ties. This data observability model helps in unbiased parameter estimation, thereby improving the
prediction accuracy of the missing affinities. Yet another property of these datasets is their dynamic
nature characterized by constant arrival and/or departure of entities, continuously evolving prefer-
ences, tastes and hence affinity relationships. We incorporate this dynamic nature of the data into
a Bayesian affinity estimation framework with temporal dynamics resulting in better suited models
for each individual time stamp.

Moreover in some applications, the learnt affinities are often used to generate a ranked prefer-
ence list of one set of entities for another entity set. We further enhance the SABAE framework for
a supervised ranking task that allows efficient learning of such rankings. Finally, we show how the
models within the SABAE framework can be used in semi-supervised co-clustering settings, includ-
ing an efficient modeling of the traditional must-link/cannot-link based constrained co-clustering.
Efficient inferencing and learning algorithms for the SABAE framework based on variational mean
field approximations are provided that allow scaling to large real-life datasets. Extensive experi-
ments on simulated and real datasets illustrate the efficacy of the proposed models.



1 Introduction

Many datasets today contain affinity relationship information between two or more sets of entities. Es-
timating the unknown affinity values given a few known values forms an important class of problems in
data mining. For example, in recent years, recommender systems have proved to be very successful at
identifying affinities between users and items. Identifying personalized content of interest can greatly
enrich the user experience and help institutions offering the recommendations to effectively target dif-
ferent kinds of users by predicting the propensity of users towards a set of items. Marketing data lends
itself perfectly for an affinity estimation problem wherein effective marketing strategies can be formu-
lated based on the predicted affinities. Additionally, there are useful applications in estimating affinities
as clickthrough rates for online ads associated with users, search queries, or web pages. A common
footing ground for all these applications is that the data arising in such domains generally consists of
two sets of entities interacting with each other. Such data is known as dyadic data [1] and the goal
is to predict the affinities between pairs of entities from the two sets. For example, in a user-movie
recommendation engine, the interacting entities are sets of users and movies. The aim then, is to find
the propensity rating for a user-movie pair.

Many current approaches for affinity estimation have concentrated only on a small number of known
affinities to infer the missing ones ( [2], [3], [4]). However, there are often available, many auxiliary
sources of information associated with the entities that can aid the estimation of affinities between them.
The most common source of additional information is the set of descriptive attributes associated with
each entity. For example, in a movie recommendation engine, the attributes associated with a user
might consist of demographic information such as age, gender, geo-location etc. that are often collected
as profile information at the time of user registration. Similarly, movie attributes consist of readily
available features such as genre, release date, running time, MPAA rating etc. The attributes associated
with entities can have a strong bearing on the affinity relationships. For example, it may be common
for adolescent males to enjoy movies about comic book characters. In this case, it could be very helpful
to have the age and gender information of the user when attempting to predict the affinity of that user
for such a movie. Another important source of auxiliary information about entities is a neighborhood
structure over them. For example, users in a recommender system setting can also be a part of a social
network represented by a user-user directed graph. The linkage structure can have an impact on a user’s
affinities, since preferences are often influenced by preferences of one’s friends. Thus, one needs to
efficiently account for these sources of information for accurate affinity estimation. In this paper, we
introduce a class of Bayesian mixture models - Side Information Aware Bayesian Affinity Estimation
(SABAE), that efficiently relates multiple sources of information such as available past affinities, entity
attributes and/or neighborhood structure over entities, to accurately predict missing affinities between
each entity pair.

Another problem associated with the methods relying only on past affinities is their inability to
intelligently cater to affinity estimation for new entities with no prior history of affinities. This is referred
to as a cold-start problem. The best one can do with these methods is to utilize a global average model,
which however, fails to capture subtle correlations that might exist between a few existing and the
new entities. Accurate prediction of affinities for new entities is very crucial for many applications.
In the recommender system example, predicting affinities for a new product before its launch could
help companies to use more targeted marketing techniques, and could help users recently introduced
to the system to quickly find products that they will find useful. By efficiently utilizing the available
side information, SABAE allows accurate prediction of affinities for new entities. Specifically, in the
absence of past affinities, the available auxiliary information can be used to predict the missing affinities
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for these new entities.

Even though, a majority of the factorization based approaches fail to handle the cold-start problem,
they are fairly effective in predicting affinities for the existing entities. This is evident in the plethora of
methods that have been proposed in the context of the movie recommendation systems, particularly for
the Netflix challenge [6]. However, generally it is hard to assign definitive interpretations to the learnt
factorized representation of the affinities. The different factors do not necessarily have meaning in an
external context, and it is difficult to use them to understand and explain the underlying causes for the
observed affinity relationships. Clustering frameworks on the other hand yield more interpretable and
actionable representations. In this paper we combine the best of both worlds - a factorized representation
is embedded within the mixture model based SABAE framework to leverage the predictive power of
the factorized representation and at the same time, retaining the interpretability of a clustering based
mixture model.

Existing approaches to affinity estimation assume that the missing affinities are missing at random
(MAR) [7]. However, this assumption is generally incorrect as is evident from a large number of affin-
ity expressing datasets that are highly sparse with highly non-random distribution of observed affinities;
a small fraction of entities account for a large fraction of the available data while the remaining ob-
servations are sparsely distributed among the remaining entities [8]. In a typical rating system, a user
often chooses to rate a particular item if there is a strong positive or negative affinity for that item. This
behavior suggests that that the observation of an affinity is dependent on the actual value of the affinity
itself. Ignoring this dependence can result in biased models thereby, significantly impairing a model’s
affinity predictions. To overcome this problem, we propose a novel Bayesian framework that explicitly
models the probability of observing an affinity, thereby getting away with the MAR assumption. The re-
sulting observation aware Bayesian affinity estimation framework significantly improves the prediction
accuracy of the missing affinities.

A key aspect of many affinity expressing datasets is their inherent dynamic nature. The preferences
of entities are often changing with time. Further, the arrival of new entities or the removal of the existing
ones can also greatly influence the affinity relationships. An accurate modeling of this evolution of
preferences can greatly improve the prediction accuracy of the missing affinities [6]. We extend the
SABAE framework within a state-space model of the input space for modeling the dynamic behavior
of the data. An efficient algorithm based on variational Kalman filtering [9] is used to update the
parameters of the state-space at each time step. This allows an efficient up to date modeling of the
affinity relationships reflecting their evolving nature at each time step.

In addition to estimating missing affinities, the proposed SABAE framework can be efficiently ex-
tended to solve many related problems as a side product. In particular, a Bayesian framework allows us
to estimate the missing entity attributes which is useful in a noisy data gathering process wherein the
attributes are either missing or noisy. The estimated attributes can then be leveraged for future affin-
ity predictions for the associated entities. The model for incorporating the neighborhood structure is
applied to a semi-supervised co-clustering setting, including the traditional must-link/cannot-link con-
strained co-clustering and matrix approximation. Further, the Bayesian methodology allows us to learn
generative models on the input affinity space resulting in an efficient feature and model selection frame-
work. Finally, the framework is further extended to a supervised ranking task for learning an ordering
on the missing affinities. Such an ordering can be used to generate preference lists for the entities (use-
ful in displaying query search results or making top-k recommendations to users in a recommendation
system).
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1.1 Contributions

The key contributions of the paper can be summarized as follows:

1. A novel flexible Bayesian framework, Side Information Aware Bayesian Affinity Estimation
(SABAE), that relates multiple sources of information - past affinities, entity attributes and/or
neighborhood structure over entities, for an accurate affinity estimation in diverse data types. Uti-
lizing the auxiliary information allows seamless handling of both warm-start and cold-start within
a single framework.

2. An embedding framework for factorization and co-clustering based approaches that leverages
superior predictive capability of a factorized representation together with the interpretability of
a clustering framework. This results in highly accurate yet easily actionable and interpretable
models for affinity estimation.

3. A novel observation aware affinity estimation framework, that efficiently models the absence or
presence of affinities by moving away from the missing at random assumption and considering
different reasons why an affinity may be missing.

4. A dynamic Bayesian affinity estimation framework that efficiently captures the evolution of affin-
ity relationships between different entity pairs, resulting in accurate affinity predictions at each
time stamp.

5. A generative model for learning sparse homogeneous decompositions of the input affinity space
resulting in efficient feature selection from multiple available sources along with the suitable
model selection among choices at varying resolutions.

6. A consistent supervised ranking framework that efficiently learns an ordering on the missing
affinities to generate top-k preference lists. Such lists are widely used for making top-k recom-
mendations to users in recommendation engines.

7. An extension of the SABAE framework to infer the missing entity attributes which can then
be leveraged for future affinity predictions. Further, the paper shows how the models learnt
within the SABAE framework can be used in semi-supervised co-clustering settings, including
an efficient modeling of the traditional must-link/cannot-link based constrained co-clustering.

8. Efficient inferencing and learning algorithms based on a mean field approximation which ensure
that all the frameworks are scalable to large-scale datasets by avoiding the sampling based MCMC
methods.

The rest of the paper is organized as follows. We summarize some of the recent work for affinity
estimation problems in 2. The basic SABAE framework is introduced in section 3 by explicit modeling
of the entity attributes resulting in an attribute aware framework (AA-BAE). Neighborhood structure
information is brought in section 4 to yield a neighborhood sensitive framework (NA-BAE). Factorized
representation of the affinities is incorporated in section 5 resulting in a Factorization Aware Bayesian
Affinity Estimation framework (FA-BAE). The data observability is modeled in section 6 to obtain
observation aware (OA-BAE) framework while the temporal dynamics are modeled in section 7. Details
on missing entity attributes estimation is included in section 8, sparse models for joint feature and model
selection are learnt in 9 and rankings over the unknown affinities are learnt in section 10. We describe
how NA-BAE model can be used for a semi-supervised co-clustering task in 11 and finally conclude in
section 12.
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2 Related Work

There is extensive literature in the data mining community for solving the problem of predicting un-
known affinities. Recently, latent factor models have become popular and successful approaches for
affinity estimation. Several authors have applied variants of these models to the Netflix problem
( [3], [5], [6], [10]). For instance, Probabilistic Matrix Factorization (PMF) [3] is based on the idea
that user-movie ratings can be represented as a product of user specific and movie specific latent fac-
tors. Different ways of regularizing the latent factors results in techniques with different properties
and generalization capabilities. While these techniques scale well, are able to address the sparsity and
imbalance of the Netflix data and improve accuracy, none of them consider any sort of auxiliary infor-
mation. Moreover, none of these approaches can efficiently handle the cold-start problem. Recently,
PMF was extended to a relational tensor factorization task [11], however the emphasis was still on the
past relations.

Content based filtering is an alternative prediction technique, where the predictions are based on the
entity attributes, e.g., annotations associated with books/blogs. Basilico and Hofmann [10] proposed
a unified approach that integrates past affinities and entity attributes. Their main contribution is the
design of a joint kernel over entity pairs that captures the similarity of past affinities as well as attribute
information. While there has been some more work in hybrid algorithms( [12], [1], [13]) and techniques
to address cold-start problems [8], none of these approaches simultaneously handle auxiliary side in-
formation and data imbalance. Other efforts ( [13], [1]) have concentrated on the entity attributes to
simultaneously co-cluster the input space as well as learn multiple predictive models for predicting the
unknown affinities, while a few others use the attributes information solely as moderating priors for the
latent factor models ( [8], [14]). While most of these approaches are able to handle cold-start problem
by collapsing to models based on attributes, however the attributes only indirectly affect the affinities.
This yields opaque models that are difficult to interpret.

Recently, attempts have been made to incorporate the social network data into the problem of pre-
dicting user-item ratings [15]. The authors incorporate user trust information into the PMF model
and illustrate that it improves the accuracy of predicting ratings on the Epinions dataset [15]. How-
ever, obtaining or estimating trust information for all pairs of users is difficult and expensive when
the only information available is largely just the social network’s graph structure. Our neighborhood
aware Bayesian affinity estimation framework only requires such a structure to obtain better prediction
accuracies. Lu et al. [14] construct a nearest neighbor graph structure using the available user-movie at-
tributes and then use the structure as a smoothing MRF prior for the PMF model. Though, this approach
can be utilized to utilize other available neighborhood structures, it cannot simultaneously handle both
attributes and the neighborhood structures. Several attempts have been made to include temporal dy-
namics into affinity estimation problems, especially in the context of the Netflix challenge. Koren [6]
identifies different reasons for dynamic behavior of recommender systems and systematically incorpo-
rates the dynamics in a latent factor model. The model however, involves a large number of user-defined
parameters which makes it very expensive to train using cross-validation. A linear state-space based
model was proposed in [14] for dynamic user-item affinity prediction, wherein the user latent factors
were smoothly evolved over time using a Gaussian process. However, dynamics over the items (such
as item popularity etc.) were ignored.

It is generally assumed in approaches to affinity estimation that the missing data is distributed at
random (often referred to as Missing at Random, or MAR [7]). However, in [16], the authors note that
this assumption is often incorrect. If the data is not MAR, it has been shown in [17] that failing to model
the distribution of missing data can significantly impair a model’s affinity predictions. [16] models the
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missing data distribution using Conditional Probability Tables, based solely on the affinity values (which
must be categorical). This approach is simplistic (and ad-hoc) and relies solely on the affinity values and
fails to provide insights into the reasons for the missingness of an affinity. Other approaches, include
the implicit feedback obtained as a result of the observation of an affinity ( [18], [5]). We introduce an
observation aware Bayesian affinity estimation framework that explicitly models the data missingness
probabilities in an efficient and systematic manner, including an exploration of the reasons responsible
for the data missingness.

Several Bayesian formulations have been proposed in the context of affinity estimation problems.
Mixed Membership stochastic Blockmodels (MMBs) [19] is one such method that utilizes affinity val-
ues to group the two entity sets via a soft co-clustering. A weighted average of the pertinent co-cluster
means is then used to estimate missing affinities. The model is shown to be quite efficient in scaling
to large datasets, however it fails to utilize any available side information. Other efforts include fully
Bayesian frameworks for PMF( [20], [21]) with differing inference techniques - ranging from Varia-
tional approximations to sampling based MCMC methods. However, the stress again is only on utilizing
the available affinities. Recently, Bayesian models based on topic models for document clustering [22]
have been utilized for estimating affinities between users and News articles [23]. Two sided general-
izations of topic models have also been utilized for co-clustering and matrix approximation problems
( [24], [26]) without taking into account auxiliary sources of information. In this paper, we extend the
topic models based approaches to systematically bring in different sources of information including past
affinities, entity attributes, neighborhood structures, temporal dynamics and/or observability models. A
taxonomy describing latent variables based approaches to affinity estimation can be obtained from Ap-
pendix E.

Notation. Before describing the SABAE framework, a quick word on the notation. We use capital
script letters for sets, {·} denote a collection of variables for unnamed sets and † represents transpose
of a matrix. Let E1 = {e1m}, [m]M

1 and E2 = {e2n}, [n]N
1 represent the sets of entities between which

affinities need to be estimated. Y = {ymn} is a set of M × N affinities between pairs of entities of the
form (e1m, e2n), e1m ∈ E1 and e2n ∈ E2. The subset Yobs ⊆ Y is a set of observed affinities while
Yunobs = Y\Yobs denotes a set of missing affinities. A weight wmn is associated with each affinity
ymn (affinity between a pair of entities e1m and e2n) such that wmn = 1 if ymn ∈ Yobs and wmn = 0
if ymn ∈ Yunobs. The set of all M × N weights is denoted by W. The set of entity attributes associ-
ated with E1 and E2 are respectively described by the sets X1 = {x1m} and X2 = {x2n}. The notation
xmn = [x†1mx†2n]† is used to denote the attributes associated with the entity pair (e1m, e2n).

3 Attribute Aware Bayesian Affinity Estimation

This section introduces Side Information Aware Bayesian Affinity Estimation (SABAE), a generative
framework for estimating affinities between two sets of entities. In this section, we only consider the
available side information to be a set of attributes (covariates) associated with each entity. Additional
sources of side information such as network structures over entities will be discussed in the next section.
Figure 1 shows the graphical model for Attribute Aware Bayesian Affinity Estimation (AA-BAE) - a
mixture model of KL clusters obtained as a cross-product of clustering the two sets of entities into K
and L clusters respectively.

Each entity e1m ∈ E1 is assigned to one of K clusters, by first sampling the mixing coefficients
π1m from a Dirichlet distribution Dir(α1). The cluster assignments z1m ∈ {1, . . . ,K} are then sampled
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Figure 1: Graphical model for Attribute Aware Bayesian Affinity Estimation

from a discrete distribution Disc(π1m) over the mixing coefficients. Similarly, the entities e2n ∈ E2,
are clustered into L clusters by first sampling the mixing coefficients π2n from Dir(α2) followed by
sampling cluster assignments z2n ∈ {1, . . . , L} from a discrete distribution Disc(π2n). We denote the set
of mixing coefficients for the entities in E1 and E2 by π1 and π2 respectively. Similarly,Z1 andZ2 are
respectively the sets of cluster assignments for the two entity sets.

The attributes x1m associated with the entity e1m are drawn from one of K possible exponential
family distributions of the form pψ1(x1m|θ1z1m)1, such that the parameter θ1z1m of the family, is chosen
according the entity cluster assignment z1m. Likewise, attributes x2n for an entity e2n are generated from
one of L possible exponential family distributions pψ2(x2n|θ2z2n). The cluster assignments z1m and z2n

over the two entities together determine a co-cluster (z1m, z2n), which then selects an exponential family
distribution, pψY(ymn|β

†
z1m z2n xmn) (out of KL such distributions), to generate the affinity ymn associated

with the entity pair (e1m, e2n). The parameters βz1m z2n
of the distribution are specific to the co-cluster

(z1m, z2n). In summary, the generative process for the attributes and the affinities between each pair of
entities is as follows (Figure 1):

1. For each entity e1m ∈ E1

(a) Sample mixing coefficients: π1m ∼ Dir(α1)

(b) Sample cluster assignment: z1m ∼ Disc(π1m)

(c) Sample entity attributes: x1m ∼ pψ1(x1m|θ1z1m)

2. For each entity e2n ∈ E2

(a) Sample mixing coefficients: π2n ∼ Dir(α2)

(b) Sample cluster assignment: z2n ∼ Disc(π2n)

(c) Sample entity attributes: x2n ∼ pψ2(x2n|θ2z2n)

3. For each pair of entities (e1m, e2n) such that e1m ∈ E1, e2n ∈ E2

(a) Sample affinity: ymn ∼ pψY(ymn|β
†
z1m z2n xmn)

1We use the canonical form of exponential family distributions: pψ(x|θ) = p0(x) exp(〈x, θ〉 − ψ(θ))
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Note that within each co-cluster (k, l), [k]K
1 , [l]

L
1 , the affinities are modeled via a generalized linear

model [27] conditioned over the entity attributes. This property, along with the use of exponential
family of distributions for modeling the attributes, provides a great flexibility in modeling diverse data
types within a single framework. The overall joint distribution over all observable and latent variables
is given by

p(Y,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β) = (1)∏
m

p(π1m|α1)p(z1m|π1m)pψ1(x1m|θ1z1m)

 ∏
n

p(π2n|α2)p(z2n|π2n)pψ2(x2n|θ2z2n)


∏

m,n

pψY(ymn|β
†
z1m z2n xmn)


Marginalizing out the latent variables, the probability of observing the known affinities and the attributes
is:

p(Yobs,X1,X2|α1,α2,Θ1,Θ2, β) =

∫
Yunobs

∫
π1

∫
π2

∏
m

p(π1m|α1)

 ∏
n

p(π2n|α2)

 (2)

∑
Z1

∑
Z2

∏
m

p(z1m|π1m)pψ1(x1m|θ1z1m)

 ∏
n

p(z2n|π2n)pψ2(x2n|θ2z2n)


∏

m,n

pψY(ymn|β
†
z1m z2n xmn)

 dYunobsdπ1dπ2

It is easy to see that AA-BAE extends the Bayesian co-clustering (BCC) [24] to a prediction framework
by explicitly modeling the attributes associated with the entities. A crucial departure from BCC (and
from most other mixture models) is that cluster assignment latent variables z1m, z2n are sampled only
once for entities e1m and e2n respectively. The assignments then combine to generate the set of affinities
ym· and y·n thereby inducing coupling between these affinities. In contrast, in BCC cluster assignments
are sampled for every entry ymn.

3.1 Inference and Learning

The model parameters (α1,α2,Θ1,Θ2, β) can in theory, be learnt by maximizing the observed log-
likelihood in equation (3) using the expectation maximization (EM) family of algorithms [28]. How-
ever, computation of log p(Yobs,X1,X2|α1,α2,Θ1,Θ2, β) is intractable for AA-BAE, rendering direct
application of EM infeasible. To overcome this problem, we propose a variational mean field approxi-
mation [29] to the true posterior distribution of the latent variables. This allows us to construct tractable
lower bounds on the observed likelihood, which can be efficiently maximized with respect to the model
parameters.

3.1.1 Inference using Naı̈ve Mean Field Approximation

To get a tractable lower bound, we approximate the true posterior distribution over the latent variables
by a fully factorized distribution of the following form:

q(Yunobs,Z1,Z2,π1,π2) =


∏
m,n

ymn∈Yunobs

q(ymn)


∏

m

q(π1m)q(z1m)

 ∏
n

q(π2n)q(z2n)

 (3)

Applying Jensen’s inequality [30], the following lower bound then exists for the observed log-likelihood:

log p(Yobs,X1,X2|α1,α2,Θ1,Θ2, β) ≥ H[q]+Eq[log p(Yobs,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β)]
(4)
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where H[q] is the entropy of the variational distribution q while Eq[·] is the expectation with respect
to q. Let Q be a set of all distributions having a fully factorized form (3). Among all variational
distributions q ∈ Q, we then seek a distribution that provides the tightest lower bound on the observed
log-likelihood. The optimal distribution corresponding the tightest lower bound is then given by:

q∗ = arg max
q∈Q

H[q] +Eq[log p(Yobs,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β)] (5)

Let i be an index variable corresponding to individual factors of the variational distribution in (3) such
that q =

∏
i qi. The optimal solution for the factor q∗i then assumes a Gibbs’ distribution of the following

form( [31], Chapter 10):

q∗i =
1
Υi

exp
(
Eq|qi[log p(Yobs,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β)]

)
(6)

Eq|qi[·] is the conditional expection with respect to q conditioned on the factor qi and Υi is the normal-
ization constant.

Using (6), the optimal variational distribution over the latent variables then assumes the following
form:

q∗(Yunobs,Z1,Z2,π1,π2) = (7)
∏
m,n

ymn∈Yunobs

q∗ψY(ymn|φmn)


∏

m

q∗(π1m|γ1m)q∗(z1m|r1m)

 ∏
n

q∗(π2n|γ2n)q∗(z2n|r2n)


where qψY(ymn|φmn) is an exponential family distribution of the same form as the one assumed for the
affinities and with natural parameter φmn, q(π1m|γ1m) and q(π2n|γ2n) are K and L dimensional Dirichlet
distributions with parameters γ1m,γ2n respectively. Variational distributions over cluster assignments
q(z1m|r1m) and q(z2n|r2n) follow discrete distributions over K and L clusters with parameters r1m, r2n

respectively. (φ,γ1,γ2, r1, r2) are collectively known as the variational parameters. The variational
parameters satisfying (6) are as follows:

φmn =

K∑
k=1

L∑
l=1

r1mkr2nl
(
β†klxmn

)
(8)

γ1mk = r1mk + α1k (9)

γ2nl = r2nl + α2l (10)

r1mk ∝ exp

log pψ1(x1m|θ1k) + Ψ(γ1mk) +

N∑
n=1

L∑
l=1

r2nl
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
])

(11)

r2nl ∝ exp

log pψ2(x2n|θ2l) + Ψ(γ2nl) +

M∑
m=1

K∑
k=1

r1mk
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
])

(12)
The expectation Eq[log pψY(ymn|β

†

klxmn)] is computed for unobserved affinities with respect to the va-
rational exponential family distribution qψY(ymn|φmn). r1mk can be interpreted as the responsibility of
the kth cluster for entity e1m. Similarly, r2nl represents the responsibility of the lth cluster for the en-
tity e2n. γ1mk is the kth component of the Dirichlet distribution parameters γ1m while γ2nl is the lth

8



Algorithm 1 Learn AA-BAE
Input: Yobs,X1,X2,K, L
Output: α1,α2,Θ1,Θ2, β

[m]M
1 , [n]N

1 , [k]K
1 , [l]

L
1

Step 0: Initialize α1,α2,Θ1,Θ2, β

Until Convergence
Step 1: E-Step

Step 1a: Initialize r1mk, r2nl

Until Convergence
Step 1b: Update φmn using equation (8)
Step 1c: Update γ1mk using equation (9)
Step 1d: Update γ2nl using equation (10)
Step 1e: Update r1mk using equation (11)
Step 1f: Update r2nl using equation (12)

Step 2: M-Step
Step 2a: Update θ1k using equation (13)
Step 2b: Update θ2l using equation (14)
Step 2c: Update βkl using equation (15)
Step 2d: Update α1 using equation (16)
Step 2e: Update α2 using equation (17)

component of the Dirichlet distribution parameters γ2n, and Ψ(·) is the digamma function. The set of
coupled update equations (8) through (12) for the variational parameters are collectively known as mean
field equations and can be satisfied iteratively. Often, to avoid the local minima problem, deterministic
annealing [32] with geometric cooling schedule is used to update the cluster assignment parameters
{r1m, r2n}, [m]M

1 , [n]N
1 .

3.1.2 Parameter Estimation

The optimized lower bound obtained from the inference step can then be maximized with respect to
the free model parameters. Taking partial derivatives of the bound with respect to the model parameters
(α1,α2,Θ1,Θ2, β) and setting them to zero, the following updates for the parameters can be obtained:

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (13)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (14)

βkl = arg max
β∈RD

M∑
m=1

N∑
n=1

r1mkr2nl
[〈(

wmnymn + (1 − wmn)∇ψY(φmn)
)
,β†xmn

〉
− ψY

(
β†xmn

)]
(15)

α1 = arg max
α1∈R

K
++

M∑
m=1

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

(α1k + r1mk − 1)

Ψ(γ1mk) − Ψ

 K∑
k′=1

γ1mk′



 (16)

α2 = arg max
α2∈R

L
++

N∑
n=1

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

(α2l + r2nl − 1)

Ψ(γ2nl) − Ψ

 L∑
l′=1

γ2nl′



 (17)
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Figure 2: Graphical model for Latent Dirichlet Attribute Aware Bayesian Affinity Estimation

The updates for the natural parameters θ1k, θ2l follow from the conjugacy2 of the mean parameter and
the natural parameter for an exponential family distribution [4]. The update for βkl is a weighted GLM
regression [27] over the attributes {xmn} for the dependent variables set to the actual affinity ymn if ymn ∈

Yobs, i.e. wmn = 1, while if the affinity is missing i.e. ymn ∈ Yunobs or wmn = 0, the value is replaced
by its expected value ∇ψY(φmn) under the variational exponential family distribution qψY(ymn|φmn). The
weights in the weighted regression are the co-cluster responsibilities given by r1mkr2nl. Any off-the-shelf
regression software can be used to efficiently update βkl (e.g., glmfit function in matlab). Further, any
form of convex regularization such as `-1, `-2 can be used to prevent overfitting in the βkl. Finally, we
see that the parameters of the Dirichlet distribution (α1,α2) can be efficiently learnt using the Newton-
Raphson’s method. Further, to constrain the parameters α1(α2) to K (L) simplex, one can follow an
adaptive line search strategy employed in [24].

Variational mean field approximation leads to an EM style algorithm wherein E-step consists of
constructing a tight lower bound to the observed log-likelihood for fixed values of the model param-
eters. The optimized lower bound is then maximized with respect to the free model parameters in
the subsequent M-step to get an improved estimate of the parameters. Starting with an initial guess
of the model parameters, the algorithm iterates between the two steps till convergence. The resulting
algorithm to learn the parameters of AA-BAE is given in algorithm 1.

3.2 Latent Dirichlet Attribute Aware Bayesian Affinity Estimation

In the generative process for AA-BAE model, the mixing coefficients π1m(π2n) are sampled once for
every entity e1m(e2n) from the prior Dirichlet distributions Dir(α1)(Dir(α2)). Hence, conditioned of
the parameters of the two Dirichlet distributions, the cluster assignment variables z1m(z2n) are sampled
independently for every entity e1m(e2n). The generative process is thus, unable to capture the dependen-
cies between different entities due to these independent cluster assignments.

To overcome this problem, we induce dependencies between the cluster assignments by sampling
the mixing coefficients π1(π2) only once for entity set E1(E2). Hence, all the entities in a particular
set share the same mixing coefficients, thereby inducing statistical dependency between them. Once

2For an exponential family distribution pψ(x|θ), the expected value follows: E[x] = ∇ψ(θ)
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the mixing coefficients are known, the cluster assignments are then sampled independently by discrete
distributions over these mixing coefficients. It is easy to see that by sharing mixing coefficients across
entities in a set, the model is an attribute sensitive two sided generalization of the Latent Dirichlet
Allocation (LDA) [22] model. Hence, the generative process for ‘Latent Dirichlet Attribute Aware
Bayesian Affinity Estimation (LD-AA-BAE)’ is then given by (figure 2):

1. Sample mixing coefficients: π1 ∼ Dir(α1)

2. Sample mixing coefficients: π2 ∼ Dir(α2)

3. For each entity e1m ∈ E1

(a) Sample cluster assignment: z1m ∼ Disc(π1)

(b) Sample entity attributes: x1m ∼ pψ1(x1m|θ1z1m)

4. For each entity e2n ∈ E2

(a) Sample cluster assignment: z2n ∼ Disc(π2)

(b) Sample entity attributes: x2n ∼ pψ2(x2n|θ2z2n)

5. For each pair of entities (e1m, e2n) such that e1m ∈ E1, e2n ∈ E2

(a) Sample affinity: ymn ∼ pψY(ymn|β
†
z1m z2n xmn)

The overall joint distribution over all observable and latent variables is then given by:

p(Y,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β) =

p(π1|α1)p(π2|α2)

∏
m

p(z1m|π1)pψ1(x1m|θ1z1m)

 ∏
n

p(z2n|π2)pψ2(x2n|θ2z2n)


∏

m,n

pψY(ymn|β
†
z1m z2n xmn)


Marginalizing out the latent variables, the probability of observing the known affinities and the attributes
is:

p(Yobs,X1,X2|α1,α2,Θ1,Θ2, β) =

∫
Yunobs

∫
π1

∫
π2

(p(π1|α1)) (p(π2|α2))

∑
Z1

∑
Z2

∏
m

p(z1m|π1)pψ1(x1m|θ1z1m)

 ∏
n

p(z2n|π2)pψ2(x2n|θ2z2n)


∏

m,n

pψY(ymn|β
†
z1m z2n xmn)

 dYunobsdπ1dπ2

Note that even marginalization of only the mixing coefficients π1 and π2 induces dependencies between
the clustering assignmentsZ1 andZ2.

3.2.1 Inference and Learning

As a result of the induced dependencies, direct maximization of the observed log-likelihood is in-
tractable using an EM algorithm. Hence, we construct tractable lower bounds using a fully factorized
mean field approximation to the true posterior distribution over the latent variables. Following analysis
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of section 3.1.1, the optimal factorized distribution over the latent variables (Yunobs,Z1,Z2,π1,π2) that
corresponds to the tightest lower bound on the observed likelihood is then given by:

q∗(Yunobs,Z1,Z2,π1,π2) = q∗(π1|γ1)q∗(π2|γ2)


∏
m,n

ymn∈Yunobs

q∗(ymn|φmn)


∏

m

q∗(z1m|r1m)

 ∏
n

q∗(z2n|r2n)


(18)

Note that, since the mixing coefficients are shared across entities from the same set, we only have
two variational factors corresponding to the mixing coefficients π1 and π2. On the other hand, for
AA-BAE there are (M + N) variational factors for mixing coefficients, one for each entity in the two
sets. The rest of the model however is similar to AA-BAE. As such, qψY(ymn|φmn) is an exponential
family distribution with natural parameter φmn, q(π1|γ1) and q(π2|γ2) are K and L dimensional Dirichlet
distributions with parameters γ1 and γ2 respectively while the cluster assignments z1m and z2n follow
discrete distributions over K and L clusters with parameters r1m and r2n respectively. The variational
parameters (γ1, γ2, φmn, r1m, r2n) are then given by (see Appendix B for derivation):

φmn =

K∑
k=1

L∑
l=1

r1mkr2nl
(
β†klxmn

)
(19)

γ1k =

M∑
m=1

r1mk + α1k (20)

γ2l =

N∑
n=1

r2nl + α2l (21)

r1mk ∝ exp

log pψ1(x1m|θ1k) + Ψ(γ1k) +

N∑
n=1

L∑
l=1

r2nl
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
])

(22)

r2nl ∝ exp

log pψ2(x2n|θ2l) + Ψ(γ2l) +

M∑
m=1

K∑
k=1

r1mk
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
])

(23)
The optimal lower bound on the observed log-likelihood with respect to the variational distribution in
(18) is then given by:

log p(Yobs,X1,X2|α1,α2,Θ1,Θ2, β) ≥ H[q∗]+Eq∗[log p(Yobs,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β)]

This bound can be maximized with respect to the free model parameters to get their improved estimates.
Taking partial derivatives of the bound with respect to the model parameters and setting them to zero,
we obtain the following updates (see Appendix B for details):

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (24)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (25)
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Algorithm 2 Learn LD-AA-BAE
Input: Yobs,X1,X2,K, L
Output: α1,α2,Θ1,Θ2, β

[m]M
1 , [n]N

1 , [k]K
1 , [l]

L
1

Step 0: Initialize α1,α2,Θ1,Θ2, β

Until Convergence
Step 1: E-Step

Step 1a: Initialize r1mk, r2nl

Until Convergence
Step 1b: Update φmn using equation (19)
Step 1c: Update γ1k using equation (20)
Step 1d: Update γ2l using equation (21)
Step 1e: Update r1mk using equation (22)
Step 1f: Update r2nl using equation (23)

Step 2: M-Step
Step 2a: Update θ1k using equation (24)
Step 2b: Update θ2l using equation (25)
Step 2c: Update βkl using equation (26)
Step 2d: Update α1 using equation (27)
Step 2e: Update α2 using equation (28)

βkl = arg max
β∈RD

M∑
m=1

N∑
n=1

r1mkr2nl
[〈(

wmnymn + (1 − wmn)∇ψY(φmn)
)
,β†xmn

〉
− ψY

(
β†xmn

)]
(26)

α1 = arg max
α1∈R

K
++

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1


Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′



 (27)

α2 = arg max
α2∈R

L
++

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

α2l +

N∑
n=1

r2nl − 1


Ψ(γ2l) − Ψ

 L∑
l′=1

γ2l′



 (28)

Note that the form of updates for the parameters (θ1k, θ2l,βkl) is similar to ones obtained for AA-BAE.
The updates for the parameters of the Dirichlet distributions α1 and α2, can be efficiently performed
using the Newton-Raphson’s method. An EM algorithm for learning the model parameters of LD-AA-
BAE is given in algorithm 2.

4 Neighborhood Aware Bayesian Affinity Estimation

An important source of auxiliary information for affinity expressing datasets is in the form of network
structures over the entity sets E1 and E2. For example, in a recommendation engine, such a structure
might be available in the form of a social network of users. In addition, a taxonomy might also be
available for the items. Such network structures encode important preference characteristics of differ-
ent entities, thereby influencing the affinities between them [15]. Systematically accounting for such
networks can greatly improve the estimation of missing affinities. Consider an example of a movie
recommendation engine with additional network information; users that are mutual friends in a given
social network often have similar tastes and preferences for some movies. Similarly, movies connected
by same actors tend to solicit similar affinity behaviors from the users. Hence, leveraging network
structures over the two sets of entities can greatly improve the prediction of missing affinities. In this
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Figure 3: Graphical model for Neighborhood Aware Bayesian Affinity Estimation

section, we incorporate such network structures into the SABAE framework. The resulting ‘Neigh-
borhood Aware Bayesian Affinity Estimation’ (NA-BAE) framework greatly improves the prediction
accuracy both for warm and cold-start scenarios.

Let N1 = {N1m, ζ1}, [m]M
1 represent a weighted network structure over the entities in the set E1.

N1m is the set of entities e1i ∈ E1 that lie in the neighborhood of entity e1m. In addition, the strength
of the neighborhood relation is encoded by a set of weights ζ1m = {ζ1mi}, i ∈ N1m. Similarly, let
N2 = {N2n, ζ2}, [n]N

1 be a network structure over the entities in the set E2. The neighborhood along with
the associated weights for an entity e2n ∈ E2 are denoted respectively, byN2n and ζ2n = {ζ1n j}, j ∈ N2n.
Assuming that the network structures along with the link strengths are known apriori, we incorporate
the neighborhood structures in the form of separate Markov random field priors [29] over cluster as-
signment latent variablesZ1 andZ2 (see figure 3 for a graphical model representation). The joint prior
distribution of the latent cluster assignment variables is then given by:

p(Z1|N1, ζ1,π1) ∝
∏

m

exp

 ∑
i∈N1m

ζ1mi1{z1m=z1i} + logπ1z1m

 (29)

p(Z2|N2, ζ2,π2) ∝
∏

n

exp

 ∑
j∈N2n

ζ2n j1{z2n=z2 j} + logπ2z2n

 (30)

where 1{z1m=z1i} is an indicator random variable that assumes a value 1 if the clustering assignments
z1m, z1i match. Similarly, the indicator random variable 1{z2l=z2 j} assumes a value 1 if the entities
(e2n, e2 j) are assigned to the same cluster. The MRF priors defined above capture an essential neighbor-
hood property by assigning the two neighboring entities e1m and e1i (e2n and e2 j) to the same cluster with
a prior probability proportional to the strength of neighborhood weight, eζ1mi (eζ2n j). Hence, the affinity
relationships for a particular entity is influenced by its neighborhood in the given network structure.
The mixing coefficients π1 and π2 represent the probability of entities in E1 and E2 respectively, being
assigned to a particular cluster independent of their neighborhood. This helps to capture entity level
cluster assignment probabilities. The mixing coefficients can first be obtained as expectations under the
Dirichlet distribution prior with learnt parameters α1 and α2 using the LD-AA-BAE model described
in section 3.2.
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The overall joint distribution over all observable and latent variables is given by:

p(Y,X1,X2,Z1,Z2|Θ1,Θ2, β,N1, ζ1,N2, ζ2,π1,π2) =

p(Z1|N1, ζ1,π1)p(Z2|N2, ζ2,π2)

∏
m

pψ1(x1m|θ1z1m)

 ∏
n

pψ2(x2n|θ2z2n)


∏

m,n

pψY(ymn|β
†
z1m z2n xmn)


The marginal distribution of the observed affinities and the attributes is obtained by integrating out the
latent variables:

p(Yobs,X1,X2|Θ1,Θ2, β,N1, ζ1,N2, ζ2,π1,π2) =∫ ∑
Z1

∑
Z2

p(Y,X1,X2,Z1,Z2|Θ1,Θ2, β,N1, ζ1,N2, ζ2,π1,π2)dYunobs

The free model parameters (Θ1,Θ2, β) can be estimated by maximizing the observed log-likelihood.
However, due to the correlations induced by the MRF priors, computation of the observed likelihood is
intractable and requires a marginalization over all configurations ofZ1 andZ2 (exponential in the size
of largest clique in the network structures).

4.1 Inference and Learning

To overcome the intractability of directly maximizing the observed log-likelihood, we construct tractable
lower bounds to the likelihood using a mean field approximation to the true posterior distribution of the
latent variables. The lower bound can then be maximized with respect to the free model parameters to
get a better estimate of their values.

We approximate the true posterior distribution over the latent variables by a fully factorized distri-
bution of the following form:

q(Yunobs,Z1,Z2) =


∏
m,n

ymn∈Yunobs

q(ymn)


∏

m

q(z1m)

 ∏
n

q(z2n)

 (31)

Under this distribution over the latent variables, the observed log-likelihood is bounded from below as
follows:

log p(Yobs,X1,X2|Θ1,Θ2, β,N1, ζ1,N2, ζ2,π1,π2) ≥

H[q] +Eq[log p(Y,X1,X2,Z1,Z2|Θ1,Θ2, β,N1, ζ1,N2, ζ2,π1,π2)]

Maximizing this lower bound over all possible factorized distributions of the form in (31), the distribu-
tion corresponding to the tightest lower bound is then given as follows (see section 3.1):

q∗(Yunobs,Z1,Z2) =


∏
m,n

ymn∈Yunobs

q∗ψY(ymn|φmn)


∏

m

q∗(z1m|r1m)

 ∏
n

q∗(z2n|r2n)


The variational distribution q∗ψY(ymn|φmn) is an exponential family distribution having same form as the
one assumed for the affinities while φmn is the natural parameter of the distribution. Similarly, varia-
tional distributions over the cluster assignments q∗(z1m|r1m) and q∗(z2n|r2n) follow discrete distribution
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Algorithm 3 Learn NA-BAE
Input: Yobs,X1,X2,N1, ζ1,N2, ζ2,K, L
Output: Θ1,Θ2, β

[m]M
1 , [n]N

1 , [k]K
1 , [l]

L
1

Step 0a: Initialize Θ1,Θ2, β,α1,α2 using algorithm 2
Step 0b: Assign π1k =

α1k∑K
k′=1 α1k′

Step 0c: Assign π2l =
α2l∑L

l′=1 α2l′

Until Convergence
Step 1: E-Step

Step 1a: Initialize r1mk, r2nl

Until Convergence
Step 1b: Update φmn using equation (32)
Step 1c: Update r1mk using equation (33)
Step 1d: Update r2nl using equation (34)

Step 2: M-Step
Step 2a: Update θ1k using equation (35)
Step 2b: Update θ2l using equation (36)
Step 2c: Update βkl using equation (37)

over K and L clusters with parameters r1m and r2n respectively. The variational parameters (φmn, r1m, r2n)
are then given by the following equations (see Appendix B for details):

φmn =

K∑
k=1

L∑
l=1

r1mkr2nl
(
β†klxmn

)
(32)

r1mk ∝ exp

log pψ1(x1m|θ1k) +
∑

i∈N1m

ζ1mir1ik + logπ1k (33)

+

N∑
n=1

L∑
l=1

r2nl
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
])

r2nl ∝ exp

log pψ2(x2n|θ2l) +
∑
j∈N2n

ζ2 jlr2 jl + logπ2l (34)

+

M∑
m=1

K∑
k=1

r1mk
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
])

The coupled mean field equations for the variational parameter updates can be satisfied iteratively to ob-
tain a lower bound on the observed log-likelihood. Note that the estimate of the posterior cluster respon-
sibilities r1 and r2 are influenced by the MRF based priors (the terms

∑
i∈Nm ζ1mir1ik and

∑
j∈Nn ζ2 jlr2 jl in

the updates for r1mk and r2nl). In particular, the posterior cluster assignment probability for each entity
is influenced by its neighboring entities. This helps us to capture the notion of neighborhood similarity
wherein neighboring entities tend to have similar affinities with a high probability.

The lower bound obtained from the inference step can be then maximized with respect to the free
model parameters. Setting partial derivatives of the bound with respect to the model parameters to zero,
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the following updates are obtained (see Appendix B for details):

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (35)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (36)

βkl = arg max
β∈RD

M∑
m=1

N∑
n=1

r1mkr2nl
[〈(

wmnymn + (1 − wmn)∇ψY(φmn)
)
,β†xmn

〉
− ψY

(
β†xmn

)]
(37)

An EM style algorithm can then be derieved wherein E-step a tight lower bound is constructed on
the observed likelihood by iteratively satisfying the mean field equations (32) through (34) for a fixed
value of the free model parameters. The optimized lower bound is then maximized in the subsequent
M-step to get an improved estimate of the model parameters. The resulting EM algorithm is given in
algorithm 3.

5 Factorization Aware Bayesian Affinity Estimation

The major data mining tasks associated with affinity expressing datasets are two folds, first an inter-
pretable understanding of the affinity relationships between the entities and secondly, inferences about
the missing affinities. While clustering based approaches yield easily interpretable results, they often
suffer from a weaker prediction capability. Recently, factorization based approaches have been shown
to give good performance on imputing the missing affinities ( [33], [3], [8]). In this section, we embed
a factorized representation of the affinity relationships into SABAE framework. The resulting factor-
ization aware Bayesian affinity estimation (FA-BAE) framework allows us to achieve the twin goals of
interpretability and superior predictive performance.

Most factorization based approaches assume that the affinity relationship between two entities is
dependent on a small number of entity specific unobserved factors. If um ∈ R

t are t dimensional factors
associated with entity e1m ∈ E1, while vn ∈ R

t are the factors corresponding to e2n ∈ E2, then the
expected value of the affinity ymn between the two entities is modeled as a linear combination of the two
factors [3]:

E[ymn] = u†mvn

We embed the above factorized representation into the SABAE framework by enforcing the affinities
in the same cluster to have similar factorized represenation. Specifically, we assume that the individual
factors are sampled from a normal distribution with co-cluster specific parameters. LetU = {um}, [m]M

1
and V = {vn}, [n]N

1 denote the factors associated with the entities in sets E1 and E2 respectively, then
the conditional distribution of the factors can be expressed as follows:

p(U|Z1) =

M∏
m=1

N(um|µ1z1m
,Σ1z1m)

p(V|Z2) =

N∏
n=1

N(vn|µ2z2n
,Σ2z2n)
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Figure 4: Graphical model for Factorization Aware Bayesian Affinity Estimation

where N(·|µ,Σ) denotes the Gaussian distribution with mean µ and covariance matrix Σ. To account for
the attribute information, we model the expected value of an affinity as:

E[ymn] = u†mvn + β†z1m z2n xmn

For simplicity in inference, we further assume the conditional distribution of the affinities conditioned
on the cluster assignment variables to be a Gaussian distribution. Hence, the complete likelihood over
all observed and latent variables is then given by:

p(Y,X1,X2,Z1,Z2,π1,π2,U,V|α1,α2,Θ1,Θ2, β,µ1,µ2,Σ1,Σ2) =

p(π1|α1)p(π2|α2)

∏
m

p(z1m|π1)pψ1(x1m|θ1z1m)N(um|µ1z1m
,Σ1z1m)

 ∏
n

p(z2n|π2)pψ2(x2n|θ2z2n)N(vn|µ2z2n
,Σ2z2n)

∏
m,n

N(ymn|u†mvn + β†z1m z2n xmn, σ
2
z1m z2n

)


5.1 Inference and Learning

The free model parameters (α1,α2,Θ1,Θ2, β,µ1,µ2,Σ1,Σ2, σ
2) can be learnt by maximizing the ob-

served log-likelihood using an EM algorithm. However, due to the sharing of the attributes and the fac-
tors for affinities associated with an entity, computation of the observed log-likelihood is intractable. To
overcome the intractability of directly maximizing the observed log-likelihood, we construct tractable
lower bounds using a mean field approximation to the true posterior distribution of the latent variables.

Following the analysis of section 3.1, we approximate the true posterior distribution by a fully
factorized distribution of the following form:

q∗(Yunobs,Z1,Z2,π1,π2,U,V) = (38)

q∗(π1|γ1)q∗(π2|γ2)


∏
m,n

ymn∈Yunobs

q∗(ymn|ϑmn, ςmn)


∏

m

q∗(z1m|r1m)q∗(um|ρ1m,Λ1m)

 ∏
n

q∗(z2n|r2n)q∗(vn|ρ2n,Λ2n)


18



where (γ1,γ2, ϑmn, ςmn, r1m, r2n, ρ1m, ρ2n,Λ1m,Λ2n) are the variational parameters. The variational pa-
rameters corresponding to the tightest lowest bound with respect to the factorized distribution in (38)
can then be expressed by the following coupled mean field equations:

The variational distribution q∗(ymn|ϑmn, ςmn) is a Gaussian distribution with mean ϑmn and variance
ςmn such that,

ϑmn = ρ†1mρ2n +

∑K,L
k,l=1

r1mkr2nl
σ2

kl
β†klxmn∑K,L

k,l=1
r1mkr2nl
σ2

kl

(39)

ς2
mn =

1∑K,L
k,l=1

r1mkr2nl
σ2

kl

(40)

Distributions q∗(π1|γ1) and q∗(π2|γ2) are K and L dimensional Dirichlet distributions with parameters
γ1,γ2 respectively.

γ1k =

M∑
m=1

r1mk + α1k (41)

γ2l =

N∑
n=1

r2nl + α2l (42)

The variational distributions q∗(um|ρ1m,Λ1m) and q∗(vn|ρ2n,Λ2n) corresponding to the optimal lower
bound are multivariate Gaussian distributions with means ρ1m, ρ2n and the precision matrices Λ1m and
Λ2n respectively. The mean field equations for the parameters of these multivariate Gaussian distribu-
tions are then given by:

ρ1m =

K∑
k=1

r1mk

Σ1kµ1k +

N∑
n=1

L∑
l=1

r2nlρ2n

σ2
kl

(ymn − β
†

klxmn)

 (43)

Λ1m =

K∑
k=1

r1mk

Σ1k +

N∑
n=1

L∑
l=1

r2nl

σ2
kl

(
Λ−1

2n + ρ2nρ
†

2n

) (44)

ρ2n =

L∑
l=1

r2nl

Σ2lµ2l +

M∑
m=1

K∑
k=1

r1mkρ1m

σ2
kl

(ymn − β
†

klxmn)

 (45)

Λ2n =

L∑
l=1

r2nl

Σ2l +

M∑
m=1

K∑
k=1

r1mk

σ2
kl

(
Λ−1

1m + ρ1mρ
†

1m

) (46)

Finally, the optimal variational distributions for the cluster assignment latent variables z1m ∈ Z1 and z2n ∈

Z2 are K and L dimensional discrete distributions with parameters r1m and r2n respectively. The up-
dates for the individual parameters is then obtained by the following equations:

r1mk ∝ exp
(
log pψ1(x1m|θ1k) + Ψ(γ1k) −

1
2

[
(ρ1m − µ1k)†Σ1k(ρ1m − µ1k) + Tr(Σ−1

1k Λ−1
1m) + logΣ1k

]
+

N∑
n=1

L∑
l=1

−r2nl

2σ2
kl

[
wmny2

mn + (1 − wmn)(ς2
mn + ϑ2

mn) − 2(wmnymn + (1 − wmn)ϑmn)(ρ†1mρ2n + β†klxmn)+
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Tr(Eq[umu†m]Eq[vnv†n]) + (βklxmn)2 + 2(ρ†1mρ2n)(βklxmn) + σ2
kl logσkl

])
(47)

r2nl ∝ exp
(
log pψ2(x2n|θ2l) + Ψ(γ2l) −

1
2

[
(ρ2n − µ2l)

†Σ2l(ρ2n − µ2l) + Tr(Σ−1
2l Λ−1

2n ) + logΣ2l
]
+

M∑
m=1

K∑
k=1

−r1mk

2σ2
kl

[
wmny2

mn + (1 − wmn)(ς2
mn + ϑ2

mn) − 2(wmnymn + (1 − wmn)ϑmn)(ρ†1mρ2n + β†klxmn)+

Tr(Eq[umu†m]Eq[vnv†n]) + (βklxmn)2 + 2(ρ†1mρ2n)(βklxmn) + σ2
kl logσkl

])
(48)

where Tr(·) denotes the trace of a square matrix and Ψ(·) is the digamma function. The expectations
E[umu†m] andE[vnv†n] are the second moments of the factors um and vn under the variational multivariate
Gaussian distributions with mean and precision matrices given by equations (43) through (46). Note
that by utilizing the weights wmn associated with each rating ymn, we ensure that for any missing rating
(i.e. wmn = 0), the expressions involving the ratings are replaced by appropriate expectations under the
variational distribution q∗(ymn|ςmn, ϑmn).

The mean field equations derived above can be satisfied iteratively to obtain a lower bound on the
observed log-likelihood. The bound can then be used as a pseudo likelihood for parameter estimation.
Specifically, maximizing the lower bound with respect to the free model parameters we obtain the
following update equations:

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (49)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (50)

The updates for cluster specific parameters for the factors (µ1,µ2,Σ1,Σ2) can be obtained in closed
form expressions:

µ1k =

∑M
m=1 r1mkum∑M

m=1 r1mk
(51)

µ2l =

∑N
n=1 r2nlvn∑N

n=1 r2nl
(52)

Σ1k =

∑M
m=1 r1mk

[
Λ−1

1m + (ρ1m − µ1k)(ρ1m − µ1k)†
]

∑M
m=1 r1mk

(53)

Σ2l =

∑N
n=1 r2nl

[
Λ−1

2n + (ρ2n − µ2l)(ρ2n − µ2l)
†
]

∑N
n=1 r2nl

(54)

A Gaussian distribution assumption over the affinities also results in a closed form updates for the glm
coefficients βkl. In fact, the updates are a solution to a weighted least squares problem for the covariates
xmn over the residual affinities (ymn − ρ

†

1mρ2n). Note that the missing affinities are replaced by their
expectations under the variational distribution. Finally, the weights are the co-cluster weights r1mkr2nl.

βkl =

 M,N∑
m,n=1

r1mkr2nlxmnxmn


−1  M,N∑

m,n=1

(wmnymn + (1 − wmn)ϑmn − ρ
†

1mρ2n)

 (55)
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Algorithm 4 Learn FA-BAE
Input: Yobs,X1,X2,K, L
Output: α1,α2,Θ1,Θ2, β,µ1,µ2,Σ1,Σ2, σ

2
kl

[m]M
1 , [n]N

1 , [k]K
1 , [l]

L
1

Step 0: Initialize α1,α2,Θ1,Θ2, β,µ1,µ2,Σ1,Σ2, σ
2
kl

Until Convergence
Step 1: E-Step

Step 1a: Initialize r1mk, r2nl, ρ1m, ρ2n
Until Convergence

Step 1b: Update (ϑmn, ςmn) using equations (39) and (40)
Step 1c: Update (γ1k, γ2l) using equations (41) and (42)
Step 1d: Update (ρ1m, ρ2n) using equations (43) and (45)
Step 1e: Update (Λ1m, Λ2n) using equations (44) and (46)
Step 1f: Update (r1mk, r2nl) using equations (47) and (48)

Step 2: M-Step
Step 2a: Update (θ1k, θ2l) using equations (49) and (50)
Step 2b: Update (µ1k, µ2l) using equations (51) and (52)
Step 2c: Update (Σ1k, Σ2l) using equations (53) and (54)
Step 2d: Update βkl using equation (55)
Step 2e: Update σ2

kl using equation (56)
Step 2f: Update (α1, α2) using equations (57) and (58)

Finally, the updates for the co-cluster variances σkl and the paraneters of the Dirichlet distribution priors
α1,α2 are given by:

σ2
kl =

∑M,N
m,n=1 r1mkr2nlEq[(ymn − u†mvn − β

†

klxmn)2]∑M,N
m,n=1 r1mkr2nl

(56)

α1 = arg max
α1∈R

K
++

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1


Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′



 (57)

α2 = arg max
α2∈R

L
++

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

α2l +

N∑
n=1

r2nl − 1


Ψ(γ2l) − Ψ

 L∑
l′=1

γ2l′



 (58)

The resulting variational EM algorithm for learning the parameters of the model is given in algorithm 4.

5.2 Neighborhood Aware Factorization

A factorized representation can easily be embedded into the NA-BAE (see section 4) framework, by
enforcing the affinities within the same co-clusters, now driven by the network structure sensitive prior
on the cluster assignment variables Z1 and Z2, to have a similar factorized representation. Hence,
following treatment introduced for factorized aware Bayesian affinity estimation, the individual factors
um and vn are sampled from a normal distribution with co-cluster specific parameters.

The complete likelihood for observed and latent variables is then given by:

p(Y,X1,X2,Z1,Z2,U,V|Θ1,Θ2, β,µ1,µ2,Σ1,Σ2,N1, ζ1,N2, ζ2,π1,π2) =

p(Z1|N1, ζ1,π1)p(Z2|N2, ζ2,π2)

∏
m

pψ1(x1m|θ1z1m)N(um|µ1z1m
,Σ1z1m)

 ∏
n

pψ2(x2n|θ2z2n)N(vn|µ2z2n
,Σ2z2n)


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∏
m,n

N(ymn|u†mvn + β†z1m z2n xmn, σ
2
z1m z2n

)


where similar to the case of NA-BAE framework, the mixing coefficients π1 and π2 can be first learnt
using the FA-BAE framework without the network structure information. Similar to FA-BAE, inference
and parameter estimation can be done using a mean field approximation to the true posterior distribution
over the latent variables.

q(Yunobs,Z1,Z2,U,V) = (59)
∏
m,n

ymn∈Yunobs

q(ymn|ϑmn, ςmn)


∏

m

q(z1m|r1m)q(um|ρ1m,Λ1m)

 ∏
n

q(z2n|r2n)q(vn|ρ2n,Λ2n)


Since, the neighborhood aware factorization differs from the FA-BAE framework only in terms of the
prior distribution over the cluster assignment variables, the mean field equations remain unchanged
for all the variational parameters except for the cluster assignment parameters r1mk and r2nl, where the
terms involving the Dirichlet distribution variational parameters for the mixing coefficients are replaced
by the neighborhood terms from the MRF prior. Also, since the mixing coefficients are first learnt using
the FA-BAE framework, no variational distribution is assumed in the factorized variational distribution.
The mean field equations for the cluster assignment variational parameters is then obtained by the
following equations:

r1mk ∝ exp

log pψ1(x1m|θ1k) +
∑

i∈N1m

ζ1mir1ik + logπ1k −
1
2

[
(ρ1m − µ1k)†Σ1k(ρ1m − µ1k) + Tr(Σ−1

1k Λ−1
1m) + logΣ1k

]
+

N∑
n=1

L∑
l=1

−r2nl

2σ2
kl

[
wmny2

mn + (1 − wmn)(ς2
mn + ϑ2

mn) − 2(wmnymn + (1 − wmn)ϑmn)(ρ†1mρ2n + β†klxmn)+

Tr(Eq[umu†m]Eq[vnv†n]) + (βklxmn)2 + 2(ρ†1mρ2n)(βklxmn) + σ2
kl logσkl

])
(60)

r2nl ∝ exp

log pψ2(x2n|θ2l) +
∑
j∈N2n

ζ2n jr2 jl + logπ2l −
1
2

[
(ρ2n − µ2l)

†Σ2l(ρ2n − µ2l) + Tr(Σ−1
2l Λ−1

2n ) + logΣ2l
]
+

M∑
m=1

K∑
k=1

−r1mk

2σ2
kl

[
wmny2

mn + (1 − wmn)(ς2
mn + ϑ2

mn) − 2(wmnymn + (1 − wmn)ϑmn)(ρ†1mρ2n + β†klxmn)+

Tr(Eq[umu†m]Eq[vnv†n]) + (βklxmn)2 + 2(ρ†1mρ2n)(βklxmn) + σ2
kl logσkl

])
(61)

6 Observation Aware Bayesian Affinity Estimation

In developing the SABAE framework for estimating affinities between sets of entities we have assumed
that the missing affinities are missing uniformly at random (often referred to as Missing at Random
(MAR) assumption. For a further explanation of the MAR assumption, see [7]). However, for most
datasets describing affinity relationships, the observed affinities are recorded in a self-selecting manner.
For example, in an internet-based movie recommendation engine, a user is likely to watch a movie that
he or she expects to enjoy. If that expectation is fully met, the user is more likely to record the high rating
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Figure 5: Graphical model for Observation Aware Bayesian Affinity Estimation

so as to share the recommendation to others. Additionally, if the movie was strongly disappointing, the
user is also more likely to share the low rating so as to warn others about it. On the other hand, if
the movie does not evoke a strong reaction from the user, the likelihood that he or she will rate the
movie at all is significantly lower. This behavior suggests that the event of observing a rating depends
on the value of the rating. In this section, we extend the SABAE framework to incorporate this self-
selecting property by explicitly modeling the probability of observing an affinity between a pair of
entities. The resulting observation aware Bayesian affinity estimation (OA-BAE) framework relaxes
the MAR assumption, thereby improving the prediction accuracy of the missing affinities.

We begin by extending the latent Dirichlet attribute aware Bayesian affinity estimation framework
introduced in section 3.2 to account for the probability of observing a particular affinity. Without loss
of generality, we assume that the affinities are recorded by the entities in the set E1 for the entities in
the set E2. For the movie recommendation example, the set E1 corresponds to the users while the set E2
represents the movies. To model the probability of observing an affinity ymn, let the associated weight
wmn be a Bernoulli random variable such that it takes a value one in the event the affinity is observed
and is zero for a missing affinity.

Since, the probability of observing the affinity is expected to be high for both strongly positive and
negative propensities than for a neutral affinity, an inverted Gaussian function of the affinity value can
be used to efficiently model such a dependence. However, the sense of neutrality is often a property
specific to entities recording the affinities (for example, in a movie recommendation engine, some users
are heavy recorders characterized by large number of recorded ratings including for movies for which
they have neutral affinities). Such a behavior can be easily captured by learning the expected value of
the inverted Gaussian function which represents the value of a neutral affinity. On the other hand, an
entity soliciting the affinities also influences the observation probability by evoking specific reactions
in entities recording the affinities. Continuing with the movie recommendation example, some movies
evoke a strong reaction in users resulting in a large number of recorded ratings. This suggests that a
slight deviation from the neutral affinity value for such entities results in a high observation probability.
This property can be learnt by modeling the spread of the Gaussian function using the variance term.
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Figure 6: Probability of observing an affinity as a function of the affinity value.

This term controls the degree of monotonicity of the tails of the Gaussian curve as the affinities move
away from the lowest neutral point.

The probability of observing the affinity ymn is then modeled by the following parameterized form
(see figure 6):

p(wmn|ymn, z1m, z2n) = 1 − λz1m z2n exp
−(ymn − νz1m)2

2ξ2
z2n

 (62)

where, νz1m is the expected value of the inverted Gaussian function and is shared for the entities record-
ing the affinities and assigned to the same cluster. Similarly, ξz2n is the variance of the function and
is shared by the entities soliciting the affinities and assigned to the cluster. Finally, the strength of the
Gaussian function is captured by the parameter λkl ∈ [0, 1] for the affinities assigned to the co-cluster
defined by the cluster assignments of the entity pairs. Incorporating the observation probability model
into the LD-AA-BAE framework, the resulting graphical model is shown in figure 5. The complete
likelihood for all observed and latent variables is then given by:

p(Y,W,X1,X2,Z1,Z2,π1,π2|α1, α2, θ1, θ2, β, ν, ξ, λ) = (63)

p(π1|α1)p(π2|α2)

∏
m

p(z1m|π1)pψ1(x1m|θ1z1m)

 ∏
n

p(z2n|π2)pψ2(x2n|θ2z2n)

∏
m,n

pψY(ymn|β
†
z1m z2n xmn)p(wmn|ymn, νz1m , ξz2n , λz1m z2n)


6.1 Inference and Learning

Maximization of the observed log-likelihood yields free model parameters. To overcome the intractabil-
ity of this direct optimization, tractable lower bounds are obtained using a mean field approximation to
the true posterior distribution over the latent variables. The posterior distribution is then approximated
using a fully factorized distribution having the following form:

q(Yunobs,Z1,Z2,π1,π2) = q∗(π1|γ1)q∗(π2|γ2)


∏
m,n

ymn∈Yunobs

q∗(ymn)


∏

m

q∗(z1m|r1m)

 ∏
n

q∗(z2n|r2n)


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where similar to the case of LD-AA-BAE, q∗(π1|γ1) and q∗(π2|γ2) are Dirichlet distributions with varia-
tional parameters γ1k and γ2l respectively while the variational distributions corresponding to the tight-
est lower bound, for the cluster assignment variables are discrete distributions with parameters r1 and
r2 respectively. The optimal variational distribution for the unobserved affinities is given by:

q∗(ymn) ∝ p0(ymn) exp

〈ymn,

K,L∑
k,l=1

r1mkr2nl(β
†

klxmn)〉 −
K,L∑

k,l=1

r1mkr2nl
(ymn − νk)2

2ξ2
l

 (64)

where p0(ymn) is the Radon-Nikodym derivative with respect to the reference measure for the expo-
nential family distribution assumed over the affinities. If the distribution is assumed to be Gaussian,
i.e. pψY(ymn|β

†

klxmn) = N(ymn|β
†

klxmn, σ
2
kl), the optimal variational distribution q∗(ymn) is also a Normal

distribution with mean and variance given as follows:

q∗(ymn) = N

ymn

∣∣∣∣∣∣∣∣∣∣
∑K,L

k,l=1 r1mkr2nl
(
ξ2

l β
†

klxmn + σ2
klνk

)
∑K,L

k,l=1 r1mkr2nl
(
ξ2

l + σ2
kl

) ,
1∑K,L

k,l=1 r1mkr2nl

(
1
ξ2

l
+ 1

σ2
kl

)


Following analysis in 3.1, the mean field equations for the variational parameters (γ1k, γ2l, r1mk, r2nl) is
obtained by following equations:

γ1k = α1k +

M∑
m=1

r1mk (65)

γ2l = α2l +

N∑
n=1

r2nl (66)

r1mk ∝ exp

log pψ1(x1m|θ1k) + γ1k +

N∑
n=1

L∑
l=1

r2nl

wmn

log pψY(ymn|β
†

klxmn) + log

1 − λkl exp

−(ymn − νk)2

2ξ2
l


+(1 − wmn)Eq

log pψY(ymn|β
†

klxmn) + log

λkl exp

−(ymn − νk)2

2ξ2
l



 (67)

r2nl ∝ exp

log pψ2(x2n|θ2l) + γ2l +

M∑
m=1

K∑
k=1

r1mk

wmn

log pψY(ymn|β
†

klxmn) + log

1 − λkl exp

−(ymn − νk)2

2ξ2
l


+(1 − wmn)Eq

log pψY(ymn|β
†

klxmn) + log

λkl exp

−(ymn − νk)2

2ξ2
l



 (68)

Iteratively satisfying the mean field equations, one can attain a lower bound on the observed log-
likelihood. This lower bound can then be used in place of the actual likelihood for parameter esti-
mation. Maximizing the lower bound with respect to the model parameters results in following update
equations:

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (69)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (70)
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Algorithm 5 Learn OA-BAE
Input: Yobs,X1,X2,K, L
Output: α1,α2,Θ1,Θ2, β, λ, ν, ξ

[m]M
1 , [n]N

1 , [k]K
1 , [l]

L
1

Step 0: Initialize α1,α2,Θ1,Θ2, β, λ, ν, ξ

Until Convergence
Step 1: E-Step

Step 1a: Initialize r1mk, r2nl

Until Convergence
Step 1b: Update q∗(ymn) using equation (64)
Step 1c: Update (γ1k, γ2l) using equations (65) and (66)
Step 1d: Update (r1mk, r2nl) using equations (67) and (68)

Step 2: M-Step
Step 2a: Update (θ1k, θ2l) using equations (69) and (70)
Step 2b: Update βkl using equation (71)
Step 2c: Update (α1,α2) using equations (72) and (73)
Step 2d: Update λkl using equation (74)
Step 2e: Update νk using equation (75)
Step 2f: Update ξl using equation (76)

βkl = arg max
β∈RD

M∑
m=1

N∑
n=1

r1mkr2nl
[〈(

wmnymn + (1 − wmn)Eq[ymn]
)
,β†xmn

〉
− ψY

(
β†xmn

)]
(71)

α1 = arg max
α1∈R

K
++

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1


Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′



 (72)

α2 = arg max
α2∈R

L
++

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

α2l +

N∑
n=1

r2nl − 1


Ψ(γ2l) − Ψ

 L∑
l′=1

γ2l′



 (73)

A closed form expression cannot be obtained for the updates of the parameters associated with ob-
servability model (λkl, νk, ξl). However, the following constrained optimization problems can be solved
efficiently using the Newton-Raphson’s method.

λkl = arg max
λkl∈[0,1]

M∑
m=1

N∑
n=1

r1mkr2nl

wmn log

1 − λkl exp

−(ymn − νk)2

2ξ2
l

 + (1 − wmn) log λkl

 (74)

νk = arg max
νk∈R

M∑
m=1

N∑
n=1

L∑
l=1

r1mkr2nl

wmn log

1 − λkl exp

−(ymn − νk)2

2ξ2
l

 +
(1 − wmn)

2ξ2
l

Eq
[
−(ymn − νk)2

]
(75)

ξl = arg max
ξl∈R

M∑
m=1

N∑
n=1

K∑
k=1

r1mkr2nl

wmn log

1 − λkl exp

−(ymn − νk)2

2ξ2
l

 +
(1 − wmn)

2ξ2
l

Eq
[
−(ymn − νk)2

]
(76)

The resulting EM algorithm for learning the model parameters is given in algorithm 5.
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7 Bayesian Affinity Estimation with Temporal Dynamics ‡

Affinity relationships between sets of entities are dynamic in nature with constantly evolving prefer-
ences. For example, a multitude of datasets recording user preferences for items indicate a strong
temporal behavior [6]. Popularity of different items is constantly changing as new selections emerge,
in turn resulting in a change in the user preferences. Static affinity estimation frameworks ignore this
dynamic nature of the data and hence suffer from inferior predictive capability. Thus, modeling tem-
poral dynamics is an important step towards accurate affinity relationship modeling. The importance
of modeling the dynamic behavior for affinity estimation is evident from the recently concluded Netflix
challenge, where temporal modeling had a significant role in the grand-prize winning solution [33].
This section extends the SABAE framework for modeling the dynamic behavior of affinity expressing
datasets. Specifically, temporal dynamics are incorporated into the LD-AA-BAE framework to specify
a statistical model of cluster evolution.

To model the temporal dynamics, it is assumed that the data is divided into different time slices. For
example, in a user-item system, the different time slices might correspond to different months of the year
to account for the seasonal effects in the user preferences or item popularity. Two changes are made to
the LD-AA-BAE model to account for the temporal behavior. First, the Dirichlet distribution priors over
the mixing coefficients π1 and π2 are replaced by logistic-normal priors [34] with mean parameters α1
and α2 respectively, and secondly, within each time slice t, the affinity relationships are modeled using
a static LD-AA-BAE model with a logistic-normal prior, where the entity clusters associated with the
time slice t evolve form clusters associated with slice t − 1. Cluster evoluation is encoded by assuming
a linear dynamic model over the mean parameters α1 and α2 of the logistic-normal priors along with an
evolution of the co-cluster GLM coefficients β. The dynamics associated with the model are then given
by

α1,t|α1,t−1 ∼ N(α1,t|α1,t−1, δ
2
1I) (77)

α2,t|α2,t−1 ∼ N(α2,t|α2,t−1, δ
2
2I) (78)

βkl,t|βkl,t−1 ∼ N(βkl,t|βkl,t−1, ω
2I) (79)

The variances in the dynamic model can be set using cross-validation and are then held fixed. The
attribute parameters Θ1,Θ2, however are assumed to be static, since entity attributes (such as user zip
code and movie release year or running time) are not expected to evolve over time. The graphical
model for a dynamic Bayesian affinity estimation model is shown in figure 7. When the horizontal
arrows representing time evolution are removed, the graphical model reduces to a set of independent
attribute aware Bayesian affinity estimation models with a logistic-normal priors. Modeling temporal
dynamics, causes the clusters to evolve smoothly over time.

7.1 Approximate Inference using Variational Kalman Filtering

The non-conjugacy of the logistic-normal prior over the mixing coefficients and the multinomial distri-
bution for the cluster assignments renders exact posterior inference intractable. Non-conjugacy further
complicates the use of stochastic sampling methods based on Gibbs sampling. To overcome this prob-
lem, we formulate a parameterized variational approximation to the true posterior distribution. The
variational parameters are then estimated to minimize the KL divergence between the true posterior
distribution over the latent variables and the assumed variational distribution. In the dynamic Bayesian

‡Joint work with Yubin Park, yubin.park@gmail.com
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Figure 7: Graphical model for Dynamic Bayesian Affinity Estimation

affinity estimation model, the latent variables are the logistic-normal prior mean α1,1:T ,α2,1:T , the mix-
ing coefficients π1,1:T ,π2,1:T , the cluster assignments Z1,1:T ,Z2,1:T and the GLM coefficients βkl,1:T .
The approximate variation posterior distribution is

q(α1,1:T ,α2,1:T ,Y
1:T
unobs,π1,1:T ,π2,1:T ,Z1,1:T ,Z2,1:T ,βkl,1:T ) = (80)

q(α1,1 . . .α1,T |α̂1,1 . . . α̂1,T ) × q(α2,1 . . .α2,T |α̂2,1 . . . α̂2,T ) ×


T∏

t=1

∏
m,n

ymn,t∈Y
t
unobs

q(ymn,t|ϑmn,t, ςmn,t)

×
T∏

t=1

q(π1,t|ρ1,t,Λ1,t)q(π2,t|ρ2,t,Λ2,t)

 M∏
m=1

q(z1m,t|r1mk,t)


 N∏

n=1

q(z2n,t|r2nl,t)


× K∏

k=1

L∏
l=1

q(βkl,1 . . .βkl,T |β̂kl,1 . . . β̂kl,T )

where, the variational distribution over the missing affinities is a Gaussian with mean ϑmn and variance
ςmn, q(π1,t|ρ1,t,Λ1,t)q(π2,t|ρ2,t,Λ2,t) are multivariate Gaussian distributions with means ρ1,t, ρ2,t and di-
agonal covariance matrices Λ1,t,Λ2,t respectively. The variational distributions for cluster assignment
variables are discrete distributions with parameters r1mk,t and r2nl,t respectively. The dynamics are cap-
tured by “Gaussian variational observations” α̂1,1:T , α̂2,1:T , β̂kl,1:T . The variational observations α̂1,1:T ,
α̂2,1:T and β̂kl,1:T can be expressed by following Gaussian distributions:

α̂1,t|α1,t ∼ N(α̂1,t|α1,t, ν̂
2
α1,tI) (81)

α̂2,t|α2,t ∼ N(α̂2,t|α2,t, ν̂
2
α2,tI) (82)

β̂kl,t|βkl,t ∼ N(β̂kl,t|βkl,t, ν̂
2
βkl,tI) (83)
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where ν̂2
α1,t, ν̂

2
α2,t and ν̂2

βkl,t
are the variances of the three distributions respectively and can be seen as the

variational parameters associated with these distributions. These variational observations and parame-
ters are not observed basically. As in Blei and Lafferty [9], these values are “hypothetical outputs” to
facilitate inferencing using a linear state space model such as Kalman filtering [41].

These hypothetical outputs correspond to a variational Gaussian distribution over the dynamic latent
variables. This choice of variational distribution allows a direct application of Kalman filtering to update
the linear state space model expressed by these variational distributions. Then, the lower bound can be
expressed in terms of the variational parameters (means and variances of these Gaussian distributions)
which can be defined by following expressions:

m̃α.,t ≡ E(α.,t|α̂.,1:T ) (84)

Ṽα.,t ≡ E((α.,t − m̃α.,t)
2|α̂.,1:T ) (85)

m̃βkl,t ≡ E(βkl,t|β̂kl,1:T ) (86)

Ṽβkl,t ≡ E((βkl,t − m̃βkl,t)
2|β̂kl,1:T ). (87)

The Gaussian assumption over the dynamic latent variables has three positive aspects. First, by using
such a linear model, we can readily compute m̃α.,t, Ṽα.,t, m̃βkl,t and Ṽβkl,t by the standard Kalman filter
equations. Kalman filter equations give us the recursions for m̃α.,t, Ṽα.,t, m̃βkl,t and Ṽβkl,t, which are
functions of α̂1,1:T , α̂2,1:T , β̂kl,1:T , ν̂2

α1,t, ν̂
2
α2,t and ν̂2

βkl,t
. Second, using the symmetry properties of the

Gaussian density, fµ,Σ(x) = fx,Σ(µ), we can easily maximize the lower bound on the observed log-
likelihood with respect to variational Gaussian observations and parameters. Finally, the additional
variational parameters (ν̂2

α1,t, ν̂
2
α2,t, ν̂

2
βkl,t

), provide an additional degree of freedom to optimize over,
resulting in a tighter lower bound.

Therefore, the m̃α. , Ṽα. , m̃βkl , Ṽβkl can be obtained by maximizing the lower bound resulting in
the following coupled equations (For a detailed derivation of the Kalman filtering updates and the
corresponding lower bound please refer to Appendix E):

∂L(m̃α. , Ṽα.)
∂α̂.

= 0 and
∂L(m̃α. , Ṽα.)

∂ν̂α.
= 0 (88)

∂L(m̃β, Ṽβ)

∂β̂
= 0 and

∂L(m̃β, Ṽβ)
∂ν̂β

= 0 (89)

Assuming a fixed value of the free model parameters, we next derive an optimal lower bound corre-
sponding to the factorized approximation to the true posterior distribution over the latent variables. The
optimal lower bound can then be optimized over the free model parameters to learn the model parame-
ters.

We next move on to the updates for the remaining variational parameters to obtain an optimal lower
bound to the observed log-likelihood. Since the mixing coefficients are sampled from a logistic-normal
prior, the log-likelihood of the cluster assignment variablesZ1, is obtained as follows:

log p(Z1,1:T |π1,1:T ) =

T∑
t=1

M∑
m=1

K∑
k=1

z1mk,t

π1k,t − log

 K∑
k′=1

exp(π1k′,t)



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Since, log is a concave function, using Jensen’s inequality [30], a family of lower bounds can be ob-
tained for the above log-likelihood expression:

log p(Z1,1:T |π1,1:T ) ≥
T∑

t=1

M∑
m=1

K∑
k=1

z1mk,t

π1k,t − ε
−1
1,t

K∑
k′=1

exp(π1k,t) + 1 − log ε1,t


where ε1,t, [t]T

1 are the variational parameters corresponding to the family of lower bounds. The varia-
tional parameters corresponding to the tightest lower bound is then given by:

ε1,t =

K∑
k=1

exp
(
ρ1k,t +

Λ1k,t

2

)
(90)

ε2,t =

L∑
l=1

exp
(
ρ2l,t +

Λ2l,t

2

)
(91)

where ε1,t, [t]T
1 are the variational parameters corresponding to the cluster assignment variables Z2.

Proceeding with the maximization of the lower bound on the observed log-likelihood with respect to
the variational parameters corresponding to missing affinities, the following updates for the variational
mean and variance can then be obtained:

ϑmn,t =

∑K,L
k,l=1

r1mk,tr2nl,t

σ2
kl

(
m̃†
βkl,t

xmn

)
∑K,L

k,l=1
r1mk,tr2nl,t

σ2
kl

(92)

ς2
mn,t =

1∑K,L
k,l=1

r1mk,tr2nl,t

σ2
kl

(93)

Using the variational Gaussian distribution of the missing affinities, the following expression evaluates
the expectation of the log-likelihood function of the affinites.

Eq[(ymn,t − β
†

kl,t xmn)2] = wmny2
mn,t + (1 − wmn)(ς2

mn,t + ϑ2
mn,t) (94)

−2(wmnymn,t + (1 − wmn)ϑmn,t)(m̃†
βkl,t

xmn) + x†mn(Ṽβkl,t + m̃βkl,t m̃
†

βkl,t
)xmn

Note that the expression uses the known affinity values for non-missing affinities (represented by
wmn = 0) and for the missing affinities, relevant expectations are taken under the variational distri-
bution. Maximization with respect to the variational discrete distributions over the cluster assignment
variables yields following updates for the variational parameters r1m and r2n:

r1mk,t ∝ exp

ρ1k,t + log pψ1(x1m|θ1k) +

N∑
n=1

L∑
l=1

r2nl,t

(
−

1
2

logσ2
kl −

1
2σkl2

Eq[(ymn,t − β
†

kl,t xmn)2]
) (95)

r2nl,t ∝ exp

ρ2l,t + log pψ2(x2n|θ2l) +

M∑
m=1

K∑
k=1

r1mk,t

(
−

1
2

logσ2
kl −

1
2σkl2

Eq[(ymn,t − β
†

kl,t xmn)2]
) (96)

Similarly, the mean field equations for the mean parameters of the variational distribution over the
mixing coefficients π1 and π2 corresponding to an optimal lower bound on the observed log-likelihood
is given by following equations:

ρ1k,t = m̃α1k ,t + σ2
1

M∑
m=1

r1mk,t −W

−Mε1,tσ
2
1 exp

Λ1k,t

2
+ m̃α1k ,t + σ2

1

M∑
m=1

r1mk,t


 (97)
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ρ2l,t = m̃α2l,t + σ2
2

N∑
n=1

r2nl,t −W

−Nε2,tσ
2
2 exp

Λ2l,t

2
+ m̃α2l,t + σ2

2

N∑
n=1

r2nl,t


 (98)

where W is the Lambert’s W function. The updates for the individual diagonal entries of the (diagonal)
covariance matrices is obtained as a solution to following constrained optimization:

Λ1k,t = arg max
Λ1k,t∈R++

−
1

2σ2
1

K∑
k=1

Λ1k,t − Mε1,t

K∑
k=1

exp
(
ρ1k,t +

Λ1k,t

2

)
+

1
2

K∑
k=1

log Λ1k,t (99)

Λ2l,t = arg max
Λ2l,t∈R++

−
1

2σ2
2

L∑
l=1

Λ2l,t − Nε2,t

L∑
l=1

exp
(
ρ2l,t +

Λ2l,t

2

)
+

1
2

L∑
l=1

log Λ2l,t (100)

The set of coupled update equations for the variational parameters can be satisfied iteratively which
yields a tight lower bound on the observed log-likelihood. Note that the convergence in guaranteed
since the bound is convex with respect to the variational parameters [31]. The optimal bound can be
maximized to get an improved estimate of the model parameters. The following updates are obtained
for the natural parameters of the exponential family distributions over the entity attributes:

θ1k = ∇ψ−1
1

∑T
t=1

∑M
m=1 r1mk,t x1m∑T

t=1
∑M

m=1 r1mk,t

 (101)

θ2l = ∇ψ−1
2

∑T
t=1

∑N
n=1 r2nl,t x2n∑T

t=1
∑N

n=1 r2nl,t

 (102)

The variances associated with the logistic-normal prior and the affinities within each co-cluster are
updated by following equations respectively,

σ2
1 =

1
KT

 T∑
t=1

(
‖ ρ1,t − m̃α1,t ‖

2 +2Tr(Ṽα1,t) + Tr(Λ1,t)
) (103)

σ2
2 =

1
LT

 T∑
t=1

(
‖ ρ2,t − m̃α2,t ‖

2 +2Tr(Ṽα2,t) + Tr(Λ2,t)
) (104)

σ2
kl =

∑T
t=1

∑M,N
m,n=1 r1mk,tr2nl,t

(
Eq[(ymn,t − β

†

kl,t xmn)2]
)

∑T
t=1

∑M,N
m,n=1 r1mk,tr2nl,t

(105)

8 Entity Attributes Estimation

In most datasets recording affinities between sets of entities, the auxiliary entity attributes are collected
from different connected sources. Often such sources are noisy and incomplete resulting in a large num-
ber of missing entity attributes. For example, in internet-based applications such as online recommender
systems, online advertisement targeting etc., the attributes associated with the targeted customer base is
often collected from the user profiles. The users are asked to submit the profile information at the time
of their registration with the system. In many cases, users can choose not to provide this information
resulting in missing user attributes. Similarly, attribute information might be unavailable for many items
or products due to un-documented attributes or as a result of a noisy data collection process. In such
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a scenario, it is imperative to impute the missing entities so as to aid in the prediction of the missing
affinities.

This section extends the LD-AA-BAE framework to automatically impute the missing attributes,
for both entity sets E1 and E2. We assume that for an entity with missing attributes, at least a single
associated affinity is observed. This is a reasonable assumption, since a lack of attribute as well as any
prior recorded affinity information means that the entity is absent from the system with no available data.
Subsets X1unobs ⊆ X1 and X2unobs ⊆ X2 denote the missing attributes for two entity sets respectively.
Similar to the weights associated with the affinities, we assign a weight w1m(w2n) with each entity
e1m ∈ E1(e2n ∈ E2) such that w1m = 0((w2n) = 0) if x1m ∈ X1unobs(x2n ∈ X2unobs). For computational
convinience during inference, we assume that the conditional distribution of the affinities conditioned
on the cluster assignment variables is a Gaussian distribution.

pψY(ymn|β
†
z1m z2n xmn) = N(ymn|β

†
z1m z2n xmn, σ

2
z1m z2n

)

As before, the free model parameters can be learnt using a variational EM algorithm with a mean
field approximation. Using a fully factorized variational distribution to approximate the true posterior
distribution, a parameterized variational distribution is then defined over the latent variables.

q(π1,π2,Yunobs,X1unobs,X2unobs,Z1,Z2) = q∗(π1m|γ1m)q∗(π2n|γ2n)× (106)
∏
m,n

ymn∈Yunobs

N(ymn|ϑmn, ς
2
mn)


∏

m

q∗(z1m|r1m)

 ∏
n

q∗(z2n|r2n)




∏
m

x1m∈X1unobs

q∗ψ∗1(x1m|$1m)




∏
n

x2n∈X2unobs

q∗ψ∗2(x2n|$2n)


where ϑmn, ς

2
mn are the mean and variance of the variational Gaussian distribution for the missing affini-

ties while similar to the case of LD-AA-BAE, q∗(π1m|γ1m) and q∗(π2n|γ2n) are K and L dimensional
Dirichlet distributions with parameters γ1,γ2 respectively. Likewise, q∗(z1m|r1m), q∗(z2n|r2n) are dis-
crete distributions over the cluster assignments. The variational distributions over the missing entities
are exponential family distributions with natural parameters $1m and $2n respectively. Optimization
over the variational parameters yields a tight lower bound on the observed log-likelihood. The result is
a set of coupled equations known as mean field equations that can be satisfied iteratively to yield the
optimal lower bound.

For notational convenience, we use the notation Eq[·] to denote the expectations of the functions of
latent variables with respect to the variational distributions. The expectation yields the actual values for
the observed variables and the difference will be clear from the context. Following inference methodol-
ogy for LD-AA-BAE (section 3.2), the updates for the variational parameters is obtained as following
equations.

ϑmn =

∑K,L
k,l=1

r1mkr2nl
σ2

kl

(
β†1klEq[x1m] + β†2klEq[x2n]

)
∑K,L

k,l=1
r1mkr2nl
σ2

kl

(107)

ς2
mn =

1∑K,L
k,l=1

r1mkr2nl
σ2

kl

(108)

The variational distributions for the missing attributes that correspond to an optimal lower bound then
assume the following forms of exponential family distributions:

q∗(x1m) ∝ p0(x1m) exp

− N∑
n=1

K,L∑
k,l=1

r1mkr2nl

σ2
kl

(β1klx1m)2

 exp (〈x1m, $1m〉) (109)
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$1m =

K∑
k=1

r1mk

θ1k + β1kl

N∑
n=1

L∑
l=1

r2nl

σ2
kl

(
Eq[ymn] − β†2klEq[x2n]

) (110)

q∗(x2n) ∝ p0(x2n) exp

− M∑
m=1

K,L∑
k,l=1

r1mkr2nl

σ2
kl

(β2klx2n)2

 exp (〈x2n, $2n〉) (111)

$2n =

L∑
l=1

r2nl

θ2l + β2kl

M∑
m=1

K∑
k=1

r1mk

σ2
kl

(
Eq[ymn] − β†1klEq[x1m]

) (112)

where $1m and $2n are the natural parameters of the distributions respectively and ψ∗1, ψ
∗
2 are the cor-

responding log partition functions. Finally, the updates for the parameters of the Dirichlet and discrete
distributions are given by:

γ1k = α1k +

M∑
m=1

r1mk (113)

γ2l = α2l +

N∑
n=1

r2nl (114)

r1mk ∝ exp
(
Eq[log pψ1(x1m|θ1k)] + Ψ(γ1k)+

N∑
n=1

L∑
l=1

r2nl

σ2
kl

(
Eq

[
−(ymn − β

†

1klx1m − β
†

2klx2n)2
]
− logσ2

kl

) (115)

r2nl ∝ exp
(
Eq[log pψ2(x2n|θ2l)] + Ψ(γ2l)+

M∑
m=1

K∑
k=1

r1mk

σ2
kl

(
Eq

[
−(ymn − β

†

1klx1m − β
†

2klx2n)2
]
− logσ2

kl

) (116)

Maximizing the optimal lower bound with respect to free parameters, the following equations can be
used to get their improved estimates:

θ1k = ∇ψ−1
1

∑M
m=1 r1mk(Eq[x1m])∑M

m=1 r1mk

 (117)

θ2l = ∇ψ−1
2

∑N
n=1 r2nl(Eq[x2n])∑N

n=1 r2nl

 (118)

β1kl =

 M,N∑
m,n=1

r1mkr2nlEq[x1mx†1m]


−1  M,N∑

m,n=1

r1mkr2nl(Eq[ymn] − β†2klEq[x2n])Eq[x1m]

 (119)

β2kl =

 M,N∑
m,n=1

r1mkr2nlEq[x2nx†2n]


−1  M,N∑

m,n=1

r1mkr2nl(Eq[ymn] − β†1klEq[x1m])Eq[x2n]

 (120)

σ2
kl =

∑M,N
m,n=1 r1mkr2nl

(
Eq

[
(ymn − β

†

1klx1m − β
†

2klx2n)2
])

∑M,N
m,n=1 r1mkr2nl

(121)
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α1 = arg max
α1∈R

K
++

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1


Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′



 (122)

α2 = arg max
α2∈R

L
++

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

α2l +

N∑
n=1

r2nl − 1


Ψ(γ2l) − Ψ

 L∑
l′=1

γ2l′



 (123)

Note that the update equations are similar to the updates for LD-AA-BAE framework with the missing
entity attributes replaced by the expected values taken with respect to the corresponding variational
distributions in equations (109) and (111).

9 Sparse Bayesian Affinity Estimation and Model Selection

This section extends the SABAE framework for learning minimum `0 norm solutions to generalized
linear models for the affinities. The minimum zero-norm solutions result in sparse GLM models dis-
tinguishing contributing features from the redundant ones. Traditionally, this has been done by putting
a Laplace prior over the coefficients of GLM which is equivalent to penalizing an `1 norm of the co-
efficients. The solution to the resulting optimization problem is achieved such that some of the coef-
ficients are zero [31]. However, rather than being dictated by the data, the resulting sparse solution is
completely determined by the obtained optimization problem. To overcome this problem, we propose
a Sparse Bayesian Affinity Estimation framework (Sp-BAE) that automatically discovers the sparsity
structure present in the data. Further, since within the SABAE framework, inherent data heterogeneity
is modeled by learning multiple local GLM models, the Sp-BAE framework is able to learn sparsity
structure within locally homogeneous partitions of the data. This results in an efficient feature selection
framework where the contributions of individual entity attributes towards the modeling of the affinities
is automatically learnt in an efficient manner.

The majority of the datasets arising in the domain of affinity relationships are extremely sparse
with majority of missing affinities. The resulting data heterogeneity is efficiently modeled within the
SABAE framework by simultaneously learning locally homogeneous decompositions of the input space
along with the predictive models for the affinities via the use of mixture models. However, the available
training data is often too sparse within the local partitions resulting in unreliable predictive models with
a limited generalization capability. Hence, in the absence of sufficient training data a trade-off exists
for modeling at varying resolutions of the input space. In the later part of this section, we propose an
unsupervised model selection framework that automatically learns the resolution of the input space best
suited for modeling different partitions of the input space. The resulting framework retains a strong
predictive capability for the sparse training data. Note that our definition of model selection is different
from the traditional definition prevalent for Bayesian mixture modeling. While in the context of mixture
models, model selection refers to an automatic determination of the number of mixture components,
we focus on a selection from models at varying resolutions of input affinity space. In the following
subsections, we begin with a detailed exposition of the sparse Bayesian affinity estimation framework
followed by the model selection for Bayesian affinity estimation.

9.1 Sparse Bayesian Affinity Estimation

In order to achieve sparse solutions within the SABAE framework, we assume that only a subset of
the available entity attributes contribute to the prediction of the corresponding affinity relationships.
Recall that the affinities are modeled by a mixture generalized linear models in which the affinities are
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assumed to be drawn from co-cluster specific exponential family distributions whose natural parameter
is modeled as a linear combination of the entity attributes, β†z1m z2n xmn. In Sp-BAE, we assign a Bernoulli
random variable bi

mn with each affinity ymn and the term i of the entity attributes such that the random
variable assumes a value 1 if the term contributes towards the modeling of the affinity relationship.
Hence, the mixture distribution of the affinities can then be written as

ymn ∼ pψY(ymn|β
†
z1m z2n(bmn ⊗ xmn)) (124)

where ⊗ denotes element wise product. Such formulation was proposed in the context of sparse linear
regression in [35], for language modeling [36] as well as for sparse topic modeling [37]. The sparsity
structure can then be efficiently learnt by learning the posterior expected values of these Bernoulli
feature selector variables. Since, the affinities within a single co-cluster are assumed to be generated
from a single GLM distribution, they are expected to follow a common sparsity pattern. Hence, the
posterior probability of the selector variables for a specific term is assumed to be shared by affinities
within a single co-cluster. Let εi

z1m z2n
be the probability of the Bernoulli random variable bi

mn to assume
a value one. Then, the expected sparsity of a co-cluster (k, l) can be defined as follows

E[sparsitykl|εkl] ≡ 1 −
D∑

i=1

εi
kl/D (125)

The sparsity model described above can be incorporated into the LD-AA-BAE framework for sparse
Bayesian affinity estimation. We next derive a variational EM algorithm for learning the free model
parameters including the Bernoulli probabilities εi

z1m z2n
. For ease of inference, we assume that the

affinities are drawn from a mixture of Gaussian distributions having the following form:

ymn ∼ N(ymn|β
†
z1m z2n(bmn ⊗ xmn), σ2

z1m z2n
)

We also assign to each affinity ymn, an additional Bernoulli variable b0
mn which is always one and cor-

responds to the bias term of the linear model. Hence, ε0
kl = 1 for all the co-clusters (k, l). Learning

model parameters by an exact EM algorithm requires computation of the observed log-likelihood by
marginalization of the latent variables. This requires KL2D computations for each affinity along with
the marginalization of the mixing coefficients. To avoid this expensive computation we introduce a fully
factorized mean field approximation to the true posterior distribution of the latent variables.

q(π1,π2,Yunobs,B,Z1,Z2) = q∗(π1m|γ1m)q∗(π2n|γ2n)× (126)
∏
m,n

ymn∈Yunobs

N(ymn|ϑmn, ς
2
mn)


∏

m

q∗(z1m|r1m)

 ∏
n

q∗(z2n|r2n)


∏

m,n

∏
i

q∗(bi
mn|δ

i
mn)


The variational distributions for different factors assume a form similar to the ones in LD-AA-BAE
model except for the missing affinities which are now approximated by a Gaussian distribution with
mean ϑmn and variance ς2

mn. The variational distribution for the feature selector random variables bi
mn

is assumed to be a Bernoulli distribution with variational parameter δi
mn. Following analysis for the

LD-AA-BAE model, a tight lower bound can be constructed over the observed log-likelihood. The
variational parameters corresponding to an optimal lower bound then satisfy the following mean field
equations:

ϑmn =

∑K,L
k,l=1

r1mkr2nl
σ2

kl

(∑D
i=0 β

i
klδ

i
klx

i
mn

)
∑K,L

k,l=1
r1mkr2nl
σ2

kl

(127)
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ς2
mn =

1∑K,L
k,l=1

r1mkr2nl
σ2

kl

(128)

γ1k = α1k +

M∑
m=1

r1mk (129)

γ2l = α2l +

N∑
n=1

r2nl (130)

δi
mn =

exp
(∑K,L

k,l=1 r1mkr2nl

[
log

(
εi

kl
1−εi

kl

)
+

βi
kl x

i
mn

2σ2
kl

(
2wmnymn + 2(1 − wmn)ϑmn − β

i
klx

i
mn −

∑
j,i β

j
klδ

j
klx

j
mn

)])
1 + exp

(∑K,L
k,l=1 r1mkr2nl

[
log

(
εi

kl
1−εi

kl

)
+

βi
kl x

i
mn

2σ2
kl

(
2wmnymn + 2(1 − wmn)ϑmn − β

i
klx

i
mn −

∑
j,i β

j
klδ

j
klx

j
mn

)])
(131)

r1mk ∝ exp

log pψ1(x1m|θ1k) + Ψ(γ1k) +

N∑
n=1

L∑
l=1

r2nl

 D∑
i=0

(
δi

mn log εi
kl + (1 − δi

mn) log(1 − εi
kl)

)
−

1
2

logσ2
kl −

1
2σ2

kl

Eq

(ymn −

D∑
i=0

βi
klb

i
mnxi

mn)2




 (132)

r2nl ∝ exp

log pψ2(x2n|θ2l) + Ψ(γ2l) +

M∑
m=1

K∑
k=1

r1mk

 D∑
i=0

(
δi

mn log εi
kl + (1 − δi

mn) log(1 − εi
kl)

)
−

1
2

logσ2
kl −

1
2σ2

kl

Eq

(ymn −

D∑
i=0

βi
klb

i
mnxi

mn)2




 (133)

The coupled mean field equations can be satisfied iteratively to get a tight lower bound on the observed
log-likelihood (convergence is guaranteed by convexity of the lower bound). The lower bound can
then be maximized with respected to the free model parameters to obtain an improved estimate of the
parameters.

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (134)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (135)

α1 = arg max
α1∈R

K
++

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1


Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′



 (136)

α2 = arg max
α2∈R

L
++

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

α2l +

N∑
n=1

r2nl − 1


Ψ(γ2l) − Ψ

 L∑
l′=1

γ2l′



 (137)

εi
kl =

∑M,N
m,n=1 r1mkr2nlδ

i
mn∑M,N

m,n=1 r1mkr2nl
(138)
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βi
kl =

∑M,N
m,n=1 r1mkr2nlδ

i
mn

(
wmnymn + (1 − wmn)ϑmn −

∑
j,i β

j
klδ

j
mnx j

mn

)
∑M,N

m,n=1 r1mkr2nlδ
i
mn

(139)

The update equations are similar to M-step update equations of LD-AA-BAE. Since a Gaussian distri-
bution assumption is assumed over the affinities, a closed form expression is obtained for the updates
of the GLM coefficients βkl. Further, each term i of the entity attributes is weighted by posterior feature
selector probability yielding the desired sparsity structure.

9.2 From Local to Global: Model Selection for Bayesian Affinity Estimation

Using the basic SABAE framework, the modeling of affinity relationship between a pair of entities can
be achieved at following resolutions of the input affinity space

1. Local Modeling corresponds to modeling the affinities by a mixture model with separate GLM
parameters for each co-cluster. This requires learning of KL models, one for each co-cluster.

ymn ∼ pψY(ymn|β
†

1z1m z2n
xmn) (140)

2. Shrinked Modeling retains separate models for the clusters (in place of co-clusters) for the two
identity sets resulting in K + L models, one for each cluster. The affinities within a co-cluster are
modeled by borrowing the parameters of the corresponding clusters.

ymn ∼ pψY(ymn|β2z1m
x1m + β†2z2n

x2n) (141)

3. Global Modeling corresponds to modeling the affinities by a single global model and corresponds
to a model with fewest parameters.

ymn ∼ pψY(ymn|β
†

3xmn) (142)

In the presence of sufficient amount of training data, local modeling approach can efficiently capture
complex affinity relationship structures in the input space by discovering homogeneous partitions of
the data leveraging the flexibility provided by separate model for each co-cluster. However, if the
training data is sparse, this flexibility results in the models being overfitted to the given data resulting
in over-training and hence a limited generalization capability. On the extreme, one can utilize a single
global model to overcome this problem for sparse training data. However, a single global model fails to
capture the complex interactions between entities that are important for describing the resulting affinity
relationships. To avoid this extreme behavior associated with local and global models, one can follow a
shrinked methodology by sharing parameters across individual clusters as proposed in [13].

Often, the affinity relationships and hence the resulting heterogeneity structures are very complex
such that a single modeling assumption is unable to account for the complexity resulting in a sub-
optimal performance. What is needed is thus, an automated model selection framework that chooses
the modeling assumption that best describes the underlying heterogeneity structure. We propose such
a model selection framework that assumes the affinities to be generated from a mixture of the three
possible modeling choices

ymn ∼ ε1mn pψY(ymn|β
†

1z1m z2n
xmn) + ε2mn pψY(ymn|β2z1m

x1m + β†2z2n
x2n) + ε3mn pψY(ymn|β

†

3xmn) (143)
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where the mixing coefficients εmn are the probabilities of each modeling choice. Hence, within a
Bayesian framework one can easily learn these mixing coefficients to automatically determine the best
modeling assumption for each affinity. For a co-cluster with sufficient number of training affinities
where a reliable local model can be learnt, the above model selection framework reflects this property
by assigning a high value to the corresponding mixing coefficient ε1mn. Similarly, varying proportions
of the coefficients enable modeling of varying levels of heterogeneity in the co-clusters. We extend
the LD-AA-BAE framework for such a model selection task by assuming the affinities to be generated
from the mixture distribution described in (143). Further, we constrain the affinities within the same
co-cluster to have similar mixture distribution by sharing the mixing coefficients εmn in the co-cluster.

The model parameters can be learnt using a variational EM algorithm. The following variational
distribution can be assumed over the latent variables

q(π1,π2,Yunobs,Z1,Z2) = (144)

q∗(π1m|γ1m)q∗(π2n|γ2n)


∏
m,n

ymn∈Yunobs

q∗ψY(ymn|φmn)


∏

m

q∗(z1m|r1m)

 ∏
n

q∗(z2n|r2n)


Similar to the mean field updates for the LD-AA-BAE model, the following mean field equations can be
derieved for the variational parameters (For the basic methodology, refer to variational EM algorithm
derivation for LD-AA-BAE model, section 3.2):

φmn =

K,L∑
k,l=1

r1mkr2nl
(
ε1klβ

†

1klxmn + ε2kl
(
β†1kx1m + β†2lx2n

)
+ ε3klβ

†

3xmn
)

(145)

γ1k = α1k +

M∑
m=1

r1mk (146)

γ2l = α2l +

N∑
n=1

r2nl (147)

r1mk ∝ exp
(
log pψ1(x1m|θ1k) + Ψ(γ1k)+

N∑
n=1

L∑
l=1

r2nl
(
Eq

[
ε1kl log pψY(ymn|β

†

1klxmn) + ε2kl log pψY(ymn|β
†

1kx1m + β†2lx2n) + ε3kl log pψY(ymn|β
†

3xmn)
])

(148)
r2nl ∝ exp

(
log pψ2(x2n|θ2l) + Ψ(γ2l)+

M∑
m=1

K∑
k=1

r1mk
(
Eq

[
ε1kl log pψY(ymn|β

†

1klxmn) + ε2kl log pψY(ymn|β
†

1kx1m + β†2lx2n) + ε3kl log pψY(ymn|β
†

3xmn)
])

(149)
The update equations for the free model parameters can similarly be obtained by maximizing the re-
sulting optimal lower bound from the mean field updates.

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (150)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (151)
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α1 = arg max
α1∈R

K
++

log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1


Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′



 (152)

α2 = arg max
α2∈R

L
++

log
Γ(

∑L
l=1 α2l)∏L

l=1 Γ(α2l)
+

L∑
l=1

α2l +

N∑
n=1

r2nl − 1


Ψ(γ2l) − Ψ

 L∑
l′=1

γ2l′



 (153)

The parameters of the three modeling choices can be updated in the M-step using solutions to the
following optimization problem:

β1kl = arg max
β1kl∈R

D

M,N∑
m,n=1

r1mkr2nlε1kl
(〈

(wmnymn + (1 − wmn)∇ψY(φmn)),β†1klxmn
〉
− ψY

(
β†1klxmn

))
(154)

β2k = arg max
β2k∈R

D1

M,N∑
m,n=1

L∑
l=1

r1mkr2nlε2kl
(〈

(wmnymn + (1 − wmn)∇ψY(φmn)),β†2kx1m
〉
− ψY

(
β†1kx1m + β†2lx2n

))
(155)

β2l = arg max
β2l∈R

D2

M,N∑
m,n=1

K∑
k=1

r1mkr2nlε2kl
(〈

(wmnymn + (1 − wmn)∇ψY(φmn)),β†2lx2n
〉
− ψY

(
β†1kx1m + β†2lx2n

))
(156)

β3 = arg max
β3∈R

D

M,N∑
m,n=1

K,L∑
k,l=1

r1mkr2nlε3kl
(〈

(wmnymn + (1 − wmn)∇ψY(φmn)),β†3xmn
〉
− ψY

(
β†3xmn

))
(157)

Closed form expressions can be derived for updating the mixture coefficients corresponding to each
modeling choice that assume the following forms:

ε1kl =

∑M,N
m,n=1 r1mkr2nlEq

[
log pψY(ymn|β

†

1klxmn)
]

∑M,N
m,n=1 r1mkr2nl

(
Eq

[
log pψY(ymn|β

†

1klxmn) + log pψY(ymn|β
†

1kx1m + β†2lx2n) + log pψY(ymn|β
†

3xmn)
])

(158)

ε2kl =

∑M,N
m,n=1 r1mkr2nlEq

[
log pψY(ymn|β

†

1kx1m + β†2lx2n)
]

∑M,N
m,n=1 r1mkr2nl

(
Eq

[
log pψY(ymn|β

†

1klxmn) + log pψY(ymn|β
†

1kx1m + β†2lx2n) + log pψY(ymn|β
†

3xmn)
])

(159)

ε3kl =

∑M,N
m,n=1 r1mkr2nlEq

[
log pψY(ymn|β

†

3xmn)
]

∑M,N
m,n=1 r1mkr2nl

(
Eq

[
log pψY(ymn|β

†

1klxmn) + log pψY(ymn|β
†

1kx1m + β†2lx2n) + log pψY(ymn|β
†

3xmn)
])

(160)
Thus, by explicitly learning the mixing coefficients, one can efficiently learn the contribution of each
choice for a specific co-cluster.

10 Learning to Rank Affinities

In many applications, the learnt affinities are used to generate a preference list over one set of entities for
an entity of the other. For example, the central goal in most collaborative filtering applications is to make
top-k recommendations to different users. This is often done by first estimating user specific affinities
for a given set of items, following which a preference list is generated by ranking the estimated affinities.
As such, the bulk of the effort is spent in accurately estimating the missing affinities [38]. However,
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to generate a preference list one only needs to learn an ordering on the missing affinities rather than
the actual values of the affinities themselves. This section introduces a supervised ranking model that
efficiently learns such an ordering. In particular, the model learns pair wise ordering of affinities as a
function of entity (‘user’ and ‘item’) attributes allowing efficient generation of preference lists.

We consider a supervised ranking setting in which each training example consists of a query, a set
of input results and a (partial) preference over the results. A query result pair (q, r) is characterized by
attributes xqr. The learning task is to discover a function, known as a scoring function that provides
a query specific ordering of inputs that best respects the observed preferences. Generally, the scoring
function is a parametric function of the attributes, f (xqr; θ) and learning entails estimating the param-
eters θ. For example, in a movie recommendation engine, each query is a specific user for whom we
wish to generate a preference list over a set of movies (results). A partial ordering of the movies is
obtained from the observed ratings while the attributes can be obtained from covariates associated with
the user and the movies. For rest of the section, we describe our ranking models using the movie rec-
ommendation example. However, it should be noted that the models are generic in their applicability to
similar affinity ranking problems.

10.1 Supervised Ranking

We start with a brief introduction to supervised ranking using a movie recommendation example for
exposition of the basic ideas. In subsequent sections, we show how the basic supervised setting can be
enhanced to capture the dyadic property common to many affinity recording datasets, allowing genera-
tion of more entity-specific preference lists.

Let M be the number of users and N be the number of movies on which we intend to generate a
ranking for each individual user. A set of observed ratings can be represented as particular entries of
an M × N matrix Y = {ymi}, [m]M

1 , [i]
N
1 . To distinguish observed entries from unobserved entries in the

matrix, we assign a weight wmi ∈ {0, 1} to each rating yim such that wmi = 1 if ymi is observed and 0
otherwise. Following [38], the supervised ranking problem can then be formulated as a minimization
of a conditional surrogate loss of the following form:

ϕ(θ) = ER

∑
i, j∈R

h(aR
i j)φ( f (x j; θ) − f (xi; θ))

 (161)

The loss is a weighted disagreement cost incurred when the scoring functions, f for the entities i, j in
the given preference ranking list R disagree with the given order. The incurred disagreement cost is
(aR

i j), where h is a function of the penalties aR
i j and φ ≥ 0 is a non-increasing function. It was shown

in [38], for φ convex, the loss defined in (161) fails to asymptotically minimize the Bayes risk and
hence is inconsistent. However, it was shown that under certain conditions a regularized linear loss of
the following form is asymptotically consistent:

ϕ(θ) = ER

∑
i, j∈R

h(aR
i j)( f (x j; θ) − f (xi; θ)) + υ

∑
i

r( f (xi; θ))

 (162)

where υ > 0 and r is strictly convex and 1-coercive. Further, the required conditions for consistency of
the linear loss in (162) are satisfied if the penalties h(ai j) assume the following form [39]:

h(ai j) = si − s j, (163)

40



where si is a score associated with the entity xi to be ranked. Hence, for the movie recommendation
engine, the supervised ranking loss can be written as

ϕ(θ) =

M∑
m=1

N∑
i, j=1

wmiwm j(ymi − ym j)( f (xm j; θ) − f (xmi; θ)) + υ

M∑
m=1

N∑
i=1

wmir( f (xmi; θ)) (164)

For remainder of the section, we concentrate on the loss given by (164) and develop efficient forms of
the scoring function f (x; θ) that capture the dyadic nature of the data arising in these domains.

10.2 Ranking Affinities

A valid form for the scoring function f consists of a parameterized model over the query-input features.
For our case, a query corresponds to a user while the inputs are the sets of movies for which the ranking
needs to be generated. To efficiently capture the attributes associated with a user-movie pair, we assume
that the scoring function is a bi-linear model over the user-movie attributes [31]. Also, to include the
user (movie) specific biases which are an important property of datasets arising in such domains, we
include a factorization term comprising of a cross-product between user and movie specific factors. The
resulting parameterized scoring function is then obtained as follows:

f (xmi;Γ,u, v) = x†1mΓx2i + u†mvi (165)

Using (164), the model parameters (Γ,u, v) can then be learnt by minimizing the following loss function

ϕ(Γ,u, v) =

M∑
m=1

N∑
i, j=1

wmiwm j(ymi − ym j)
[
x†1mΓ(x2 j − x2i) + u†m(v j − vi)

]
+ υ

M∑
m=1

N∑
i=1

wmir(x†1mΓx2i + u†mvi)

+
λ

2

‖ Γ ‖2F +

M∑
m=1

‖ um ‖
2
2 +

N∑
i=1

‖ vi ‖
2
2

 (166)

wherein we have included `-2 regularizers on the model parameters. Since r is strictly convex, the
loss function can be efficiently minimized using stochastic gradient descent. The following equations
provide the resulting gradient expressions for each of the parameters:

∂ϕ

∂Γ
=

M∑
m=1

N∑
i, j=1

wmiwm j(ymi − ym j)
[
x1m(x2 j − x2i)†

]
+ υ

M∑
m=1

N∑
i=1

wmi
[
∇Γr(x†1mΓx2i + u†mvi)

]
+ λΓ

∂ϕ

∂um
=

N∑
i, j=1

wmiwm j(ymi − ym j)
[
(v j − vi)

]
+ υ

N∑
i=1

wmi
[
∇umr(x†1mΓx2i + u†mvi)

]
+ λum

∂ϕ

∂vi
=

M∑
m=1

N∑
j=1

wmiwm j(ymi − ym j) [−um] + υ

M∑
m=1

wmi
[
∇vir(x†1mΓx2i + u†mvi)

]
+ λvi

Note that the scoring function consists of a global term x†1mΓx2i, wherein a common Γ is shared for
every user movie pair, (m, i). Similarly, the function also contains a local term u†mvi such that the
parameters um and vi are different for each user m and movie i respectively. However, such a param-
eterization on the two extremes fails to leverage the inherent heterogeneity brought in by the dyadic
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nature of such datasets. What is needed is a smooth parameter sharing mechanism in between the two
extremes. SABAE framework provides an efficient backdrop for such a smooth parameter sharing.
Since we are utilizing a conditional surrogate loss minimization within a decision theoretic framework
for ranking affinities, a hard assignment version of SABAE can be used to partition the data matrix into
a grid of blocks or co-clusters. The different parameters can then be shared across users and movies
within each co-cluster. Each co-cluster (k, l) is associated with model parameters (Γkl,uk, vl) that are
shared by the users and movies that belong to the co-cluster. However, a separate set of model param-
eters for every co-cluster can lead to severe overfitting when the data is very sparse that is usually the
case in such domains. To overcome this issue, one can assume a rank t approximation on the bi-linear
model of the form Γkl = Γ1kΓ

†

2l.
Let ρ be a mapping from the M users to the K user clusters and γ be a mapping from the N movies

to the L movie clusters. The co-clustering assignments (ρ, γ) and the shared co-cluster parameters
(Γ1k,Γ2l,uk, vl), [k]K

1 , [l]
L
1 can be efficiently learnt by minimizing the following loss function

ϕ(Γ1,Γ2,u, v) =

K∑
k=1

∑
l1,l2∈C

∑
m:ρ(m)=k

i, j:γ(i),γ( j)∈{l1,l2}

wmiwm j(ymi−ym j)
[
x†1mΓ1k

(
Γ
†

2γ( j)x2 j − β
†

2γ(i)x2i
)

+ u†k
(
vγ( j) − vγ(i)

)]
+

υ

K∑
k=1

L∑
l=1

∑
m:ρ(m)=k

i:γ(i)=l

wmir(x†1mΓ1kΓ
†

2lx2i + u†kvl) +
λ

2

 K∑
k=1

‖ Γ1k ‖
2
F +

L∑
l=1

‖ Γ2l ‖
2
F +

K∑
k=1

‖ uk ‖
2
2 +

L∑
l=1

‖ vl ‖
2
2


(167)

The set C is a set of all possible
(

L
2

)
+ L movie cluster index pairs of the form (l1, l2). The loss function

can be efficiently minimized using an iterative procedure to simultaneously learn the model parameters
and the co-clustering assignments [13]. Beginning with a random clustering assignments, the model
parameters are first learnt by gradient descent following which each user (movie) is assigned to a user
(movie) cluster that minimizes the loss function in (167). The two steps that directly minimize the loss
function guarantee convergence to local minima. The expression for the gradient with respect to each
paramter is as follows:

∂ϕ

∂Γ1k
=

∑
l1,l2∈C

∑
m:ρ(m)=k

i, j:γ(i),γ( j)∈{l1,l2}

wmiwm j(ymi − ym j)
[
x†1m

(
Γ
†

2γ( j)x2 j − Γ
†

2γ(i)x2i
)]

+

υ

L∑
l=1

∑
m:ρ(m)=k

i:γ(i)=l

wmi
[
∇Γ1k r(x†1mΓ1kΓ

†

2lx2i + u†kvl)
]

+ λΓ1k

∂ϕ

∂Γ2l
=

K∑
k=1

∑
m:ρ(m)=k

i:γ(i)=l

wmiwm j(ymi−ym j)
[
−x2ix†1mΓ1k

]
+υ

K∑
k=1

∑
m:ρ(m)=k

i:γ(i)=l

wmi
[
∇Γ2lr(x†1mΓ2lΓ

†

2lx2i + u†kvl)
]
+λΓ2l

∂ϕ

∂uk
=

∑
l1,l2∈C

∑
m:ρ(m)=k

i, j:γ(i),γ( j)∈{l1,l2}

wmiwm j(ymi−ym j)
[
(uγ( j) − uγ(i))

]
+υ

L∑
l=1

∑
m:ρ(m)=k

i:γ(i)=l

wmi
[
∇uk r(x†1mΓ2lΓ

†

2lx2i + u†kvl)
]
+λuk
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∂ϕ

∂vl
=

K∑
k=1

∑
m:ρ(m)=k

i:γ(i)=l

wmiwm j(ymi − ym j) [−vk] + υ

K∑
k=1

∑
m:ρ(m)=k

i:γ(i)=l

wmi
[
∇vlr(x†1mβ2lβ

†

2lx2i + u†kvl)
]

+ λvl

11 Semi-supervised Co-clustering and Matrix Approximation

This section extends the NA-BAE framework to address the problem of co-clustering a data matrix in the
presence of side information on clustered entities. In particular, we solve the problem of co-clustering a
matrix with potentially large number of missing entries into a grid of blocks when some neighborhood
information is available for individual rows and columns. Similar to NA-BAE, the neighborhood infor-
mation is encoded using a markov random field prior on latent membership variables. The use of the
neighborhood information helps to address new rows and columns which the traditional co-clustering
methods fail to account for. A Bayesian approach helps to estimate the missing entries of the matrix as
a side product.

We intend to co-cluster an M × N data matrix into K × L blocks formed by an intersection of K row
clusters and L column clusters. The matrix has a potentially large number of missing entries represented
by the set Yunobs and a set of few known entries Yobs. The set of all M × N entries is represented by
Y = Yobs ∪ Yunobs. A weight wmn, [m]M

1 , [n]N
1 , is associated with each entry ymn such that wmn = 1 if

ymn ∈ Yobs and wmn = 0 for ymn ∈ Yunobs. A weighted neighborhood structure N1m, is used to denote a
set of rows that form the neighborhood of a row m along with the associated link strengths ζ1m. Such
neighborhoods can capture a variety of domain knowledge. For example, to represent must-link/cannot-
link constraints [40], the neighborhood N1m will consist of all the rows included in the must-link and
cannot-link constraints involving the row m. For the must-link constraints, the link strengths can be set
to a large positive value while for cannot-link constraints can be set to an equally large negative value.
A similar weighted neighborhood N2n, [n]N

1 is defined for each column n with link strengths ζ2n.
The Bayesian Semi-supervised Co-clustering (BSCC henceforth) co-clusters a data matrix into KL

co-clusters obtained as a cross-product of clustering the rows and columns into K and L clusters re-
spectively. The cluster assignments for row m and column n are represented by z1m ∈ {1, . . . ,K} and
z2n ∈ {1, . . . , L} respectively. The neighborhood information is then incorporated in the form of separate
Markov random field priors [29] over the set of cluster assignment variablesZ1 andZ2. The joint prior
distribution of the latent cluster assignment variables is then given by:

p(Z1|N1, ζ1) ∝
∏

m

exp

 ∑
i∈N1m

ζ1mi1{z1m=z1i}

 (168)

p(Z2|N2, ζ2) ∝
∏

n

exp

 ∑
j∈N2n

ζ2n j1{z2n=z2 j}

 (169)

The cluster assignments for a row-column pair, (z1m, z2n) together determine a co-cluster which then
selects an exponential family distribution, pψY(ymn|θz11 z2n) (out of KL such distributions), to generate a
matrix entry ymn. The parameters θz11 z2n of the distribution are specific to the co-cluster (z1m, z2n). The
overall joint distribution of the observed and latent variables is then given by:

p(Y,Z1,Z2|Θ,N1,N2, ζ1, ζ2) = p(Z1|N1, ζ1)p(Z2|N2, ζ2)

∏
m,n

pψY(ymn|θz11 z2n)


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The free model parameters Θ can be estimated by maximizing the incomplete log-likelihood via Ex-
pectation Maximization [28]. Computation of incomplete log-likelihood requires marginalization over
all possible states of cluster assignments Z1 and Z2. Due to the correlations induced by the MRF
priors, this marginalization requires a computation that is exponential in the size of the largest clique in
the given neighborhood structures. To overcome this problem, we employ a fully factorized mean field
approximation for an approximate inference.

As before, the true posterior distribution over the unobserved variables is approximated by the
following parameterized distributions

q(Yunobs,Z1,Z2|φmn, r1, r2) =


∏
m,n

ymn∈Yunobs

qψY(ymn|φmn)


∏

m

q(z1m|r1m)

 ∏
n

q(z2n|r2n)

 (170)

where similar to the case of NA-BAE, qψY(ymn|φmn) is an exponential family distribution of the same
form as the one assumed for the matrix entries and with natural parameter φmn. Variational distributions
over cluster assignments q(z1mr1m) and q(z2n|r2n) follow discrete distributions over K and L clusters
with parameters r1m, r2n respectively. Following analysis of section 3.1, a variational mean field ap-
proximation for posterior inference then results in following updates for the variational parameters

φmn =

K∑
k=1

L∑
l=1

r1mkr2nlθkl (171)

r1mk ∝ exp

 ∑
i∈N1m

ζ1mir1ik +

N∑
n=1

L∑
l=1

r2nl
(
wmn log pψY(ymn|θz11 z2n) + (1 − wmn)Eq[log pψY(ymn|θz11 z2n)]

)
(172)

r2nl ∝ exp

 ∑
j∈N2n

ζ2n jr2n j +

M∑
m=1

K∑
k=1

r1mk
(
wmn log pψY(ymn|θz11 z2n) + (1 − wmn)Eq[log pψY(ymn|θz11 z2n)]

)
(173)

where the expectationEq[log pψY(ymn|θz11 z2n)] is taken with respect to the variational distribution qψY(ymn|φmn)
over the missing matrix entries. The coupled mean field equations can be iteratively satisfied for an
approximate posterior inference which can then be used to construct a lower bound on the observed
log-likelihood similar to (4). The lower bound can then be maximized with respect to the free model
parameters to update the natural parameters Θ of the exponential family distributions over the matrix
entries. The update is given as follows:

θkl = ∇ψ−1
Y


∑M,N

m,n=1 r1mkr2nl
(
wmnymn + (1 − wmn)∇ψY(φmn)

)
∑M,N

m,n=1 r1mkr2nl

 (174)

Note that the missing entries (represented by wmn = 0) are replaced by their expected value, ∇ψY(φmn)
under their variational distribution. An EM style algorithm can then be derived wherein E-step varia-
tional posterior inference is done by updating the mean field equations to construct a tight lower bound
on the observed log-likelihood. The optimized lower bound is then maximized with respect to free
model parameters Θ, in the subsequent M-step to get an improved estimate of their values. Starting
with an initial guess of Θ, the algorithm iterates between two steps until convergence.
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12 Concluding Remarks

Side information aware Bayesian affinity estimation is a promising framework that efficiently incor-
porates multiple sources of side information including past affinities, entity attributes, temporal infor-
mation, and/or neighborhood structures, within a Bayesian framework for an affinity estimation task.
The use of exponential family distributions for modeling entity attributes as well as the affinity rela-
tionships renders great flexibility for modeling diverse data types in numerous domains. Embedding
a factorized representation within the SABAE framework allows models with a strong generalization
capability without losing the interpretability of a mixture model. Bayesian framework further allows
an efficient modeling of the self-recording behavior of the affinity relationships leading to an improved
generalization ability. Many additional useful tasks such as estimating missing entity attributes, efficient
feature and model selection, a supervised ranking framework as well as a model for semi-supervised
constrained co-clustering are obtained as side products of the SABAE framework.

While in this paper we have followed a parametric approach towards Bayesian modeling that re-
quires the number of clusters as an input to the framework, the framework can easily be extended to
non-parametric models by replacing the Dirichlet distribution priors with the corresponding process
prior. This will enable an automatic estimation of the required number of clusters.
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A Variational Inference using Mean Field Approximation (MFA)

A maximum likelihood approach to parameter estimation generally involves maximization of the ob-
served log-likelihood log p(X|Θ) with respect to the free model parameters, i.e.,

Θ∗ML = arg max
Θ

log p(X|Θ) (A1)

= arg max
Θ

log
∫
Z

p(X,Z|Θ)dZ (A2)

where X and Z are sets of observed and hidden variables respectively. In the presence of hidden
variables, the maximum likelihood estimate is often done using the Expectation-Maximization (EM)
algorithm [28]. The following lemma forms the basis of the EM algorithm [29].

Lemma 1. Let X denote a set of all the observed variables and Z a set of the hidden variables in a
Bayesian network. Then, the observed log-likelihood can be lower bounded as follows

log p(X,Z|Θ) ≥ F (Q,Θ)

where

F (Q,Θ) = −

∫
Z

Q(Z) log Q(Z)dZ +

∫
Z

Q(Z) log p(X,Z|Θ)dZ (A3)

for some distribution Q and the free model parameters Θ.

Proof. The proof follows from the Jensen’s inequality and the concavity of the log function.

log p(X|Θ) = log
∫
Z

Q(Z)
Q(Z)

p(X,Z|Θ)dZ

≥

∫
Z

Q(Z) log
p(X,Z|Θ)

Q(Z)
dZ

= −

∫
Z

Q(Z) log Q(Z)dZ +

∫
Z

Q(Z) log p(X,Z|Θ)dZ

= F (Q,Θ)

�

Starting from an initial estimate of the parameters,Θ0, the EM algorithm alternates between maximizing
the lower bound F with respect to Q (E-step) andΘ (M-step), respectively, holding the other fixed. The
following lemma shows that maximization the lower bound with respect to the distribution Q in the
E-step makes the bound exact, so that the M-step is guranteed to increase the observed log-likelihood
with respect to the parameters.

Lemma 2. Let F (Q,Θ) denote a lower bound on the observed log-likelihood of the form in (A3), then

Q∗ = p(Z|X,Θ) = arg max
Q
F (Q,Θ)

and F (Q∗,Θ) = log p(X|Θ).
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Proof. The lower bound on the observed log-likelihood is

F (Q,Θ) = −

∫
Z

Q(Z) log Q(Z)dZ +

∫
Z

Q(Z) log p(X,Z|Θ)dZ

= −

∫
Z

Q(Z) log
Q(Z)

p(Z|X,Θ)
dZ +

∫
Z

Q(Z) log
p(X,Z|Θ)
p(Z|X,Θ)

dZ

= log p(X|Θ) − KL(Q ‖ p(Z|X,Θ))

Maximum is attained when the KL-divergence KL(Q ‖ p(Z|X,Θ)) is zero, which is uniquely achieved
for Q∗ = p(Z|X,Θ) at which point the bound becomes an equality for log p(X|Θ). �

However, in many cases, computation of the true posterior distribution, p(Z|X,Θ) is intractable. To
overcome this problem, the distribution Q is restricted to a certain family of distributions. The optimal
distribution within this restricted class is then obtained by minimizing the KL-divergence to the true
posterior distribution. The approximating distribution is known as a variational distribution [29].

There are a number of ways in which the family of possible distributions can be restricted. One way
of restricting the approximating distributions is to use a parameteric distribution Q(Z|Φ) determined by
a set of parameters Φ, known as variational parameters. In the E-step, the lower bound then becomes
a function of variational parameters, and standard non-linear optimization methods can be employed to
obtain the optimal values of these parameters. Yet another way to restrict the family of approximationg
distributions is to assume a certain conditional independence structure over the hidden variablesZ. For
example, one can assume a family of fully factorized distributions of the following form

Q =
∏

i

qi(zi) (A4)

This fully factorized assumption is often known as a mean field approximation in statistical mechan-
ics. The following lemma derieves the expression for optimal variational distribution subject to a full
factorization assumption.

Lemma 3. Let Q = {Q} be a family of factorized distributions of the form in (A4). Then the optimal
factorized distribution corresponding to the tightest lower bound is given by,

Q∗ =
∏

i

q∗i (zi) = arg max
Q∈Q

F (Q,Θ) such that q∗i (zi) ∝ exp
(
E−i[log p(X,Z|Θ)]

)
where E−i[log p(X,Z|Θ)] denotes a conditional expectation conditioned on zi.

Proof. Using lemma 2, the optimal distribution Q ∈ Q is given by

Q∗ = arg min
Q∈Q

KL(Q ‖ p(Z|X,Θ))

where the KL-divergence can be expressed as

KL(Q ‖ p(Z|X,Θ)) =
∑

i

∫
zi

qi(zi) log qi(zi)dzi −

∫
zi

qi(zi)


∫
Z−i

log p(Z|X,Θ)
∏
j,i

q j(z j)dZ−i

 dzi

=
∑
j,i

∫
z j

q j(z j) log q j(z j)dz j +

∫
zi

qi(zi) log
qi(zi)

exp
(
E−i[log p(X,Z|Θ)

)
]
dzi

The second term in the above expression is a KL-divergence. Keeping {q j,i(z j)} fixed, the optimum with
respect to qi(zi) is attained when KL-divergence is zero, i.e. q∗i (zi) ∝ exp

(
E−i[log p(X,Z|Θ)]

)
. �
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The above lemma shows that the optimal variational distribution subject to the factorization constraint
is given by a set of consistency conditions over different factors of the hidden variables. These coupled
equations are known as mean field equations and can be satisfied iteratively. Convergence is guaranteed
because the bound F is convex with respect to each of the factors [42].

B MFA for Bayesian Affinity Estimation

This appendix illustrates the derivation of a MFA based expectation maximization algorithm for param-
eter estimation of a Latent Dirichlet Attribute Aware Bayesian Affinity Estimation framework (LD-AA-
BAE). The techniques introduced in this appendix are also used for derieving updates for rest of the
models in the paper and the same analysis can be easily extended. For the purpose of exposition, we
however, concentrate only on the LD-AA-BAE model.

The joint distribution over all observable and latent variables for the LD-AA-BAE model is given
by:

p(Y,X1,X2,Z1,Z2,π1,π2|α1,α2,Θ1,Θ2, β) =

p(π1|α1)p(π2|α2)

∏
m

p(z1m|π1)pψ1(x1m|θ1z1m)

 ∏
n

p(z2n|π2)pψ2(x2n|θ2z2n)


∏

m,n

pψY(ymn|β
†
z1m z2n xmn)


(B1)

The approximate variational distribution Q over the hidden variables is

Q(Yunobs,Z1,Z2,π1,π2) = q(π1|γ1)q(π2|γ2)


∏
m,n

ymn∈Yunobs

q(ymn|φmn)


∏

m

q(z1m|r1m)

 ∏
n

q(z2n|r2n)


(B2)

The updates for factors corresponding to the optimal variational distribution is obtained using lemma 3.
E-step Update for q∗(ymn|φmn): Collecting terms containing the affinities ymn in the conditional expec-
tation of the complete log-likelihood, we obtain

q∗(ymn) ∝ p0(ymn) exp

 K,L∑
K,L=1

r1mkr2nl〈ymn,β
†

klxmn〉


which shows that variational distribution for the missing affinities is an exponential family distribution
having the same form as the one assumed for the affinities with the natural parameter given by:

φmn =

K,L∑
k,l=1

r1mkr2nl
(
β†klxmn

)
(B3)

E-step Updates for q∗(π1|γ1) and q∗(π2|γ2): Conditional expectation with respect to the mixing coeffi-
cients π1 yields,

q∗(π1) ∝ exp

 K∑
k=1

α1k +

M∑
m=1

r1mk

 log π1k


=

K∏
k=1

(π1k)(α1k+
∑M

m=1 r1mk)
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Easy to see that, the optimal variational distribution q∗(π1|γ1) is a Dirichlet distribution over a K-
simplex with parameters given by:

γ1k = α1k +

M∑
m=1

r1mk (B4)

Similarly, q∗(π2|γ2) is a Dirichlet distribution over a L-simplex with parameters:

γ2l = α2l +

N∑
n=1

r2nl (B5)

E-step Updates for q(z1m|r1m) and q(z2n|r2n): Conditional expectation with respect to discrete cluster
assignment variable z1mk for the cluster k results in the following update:

q∗(z1mk = 1) = r1mk ∝ exp

log pψ1(x1m|θ1k) + Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′

 +

N∑
n=1

L∑
l=1

r2nl
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
]) (B6)

The first term is the log-likelihood of the entity attributes, the second term is the expectation of log π1k

with respect to the variational Dirichlet distribution while the last term involves the log-likelihood of
all the affinities associated with the entity e1m. The known log-likelihood is used if the affinity is
observed (wmn = 0), while the log-likelihood for the missing affinities is replaced by the corresponding
expecations under the variational distribution q∗(ymn|φmn). Analogously, the update equation for the
cluster assignment variable q∗(z2nl = 1) is given by:

q∗(z2nl = 1) = r2nl ∝ exp

log pψ2(x2n|θ2l) + Ψ(γ2l) − Ψ

 L∑
l′=1

γ2l′

 +

M∑
m=1

K∑
k=1

r1mk
(
wmn log pψY(ymn|β

†

klxmn) + (1 − wmn)Eq
[
log pψY(ymn|β

†

klxmn)
]) (B7)

M-step Updates for θ1k and θ2l: Taking expectation of the complete log-likelihood with respect to the
variational distribution, we obtain the following expression for the lower bound F as a function of the
entity attributes parameters:

F (Θ1,Θ2) =

M∑
m=1

K∑
k=1

r1mk log pψ1(x1m|θ1k) +

N∑
n=1

L∑
l=1

r2nl log pψ2(x2n|θ2l)

Taking partial derivatives with respect to θ1k and θ2l, we obtain the following updates:

θ1k = ∇ψ−1
1

∑M
m=1 r1mkx1m∑M

m=1 r1mk

 (B8)

θ2l = ∇ψ−1
2

∑N
n=1 r2nlx2n∑N

n=1 r2nl

 (B9)
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M-step Updates for βkl: Collecting terms containing the GLM coefficients in the lower bound, we
obtain:

F (βkl) =

M∑
m=1

N∑
n=1

r1mkr2nl
[〈(

wmnymn + (1 − wmn)∇ψY(φmn)
)
,β†xmn

〉
− ψY

(
β†xmn

)]
As earlier, the missing affinities are replaced by corresponding expected values under the variational
exponential family distribution. The lower bound can be maximized using a gradient ascent method.
The expressions for the gradient and the gradient-ascent updates are obtained as follows:

∇F (βkl) =

M∑
m=1

N∑
n=1

r1mkr2nl
[(

wmnymn + (1 − wmn)∇ψY(φmn)
)
− ∇ψY

(
β†xmn

)]
xmn (B10)

βt+1
kl = βt

kl + η∇F (βkl) (B11)

where η is the step-size for the update.
M-step Updates for α1 and α2: The expression for the lower bound as a function of the Dirichlet
parameters α1 is:

F (α1) = log
Γ(

∑K
k=1 α1k)∏K

k=1 Γ(α1k)
+

K∑
k=1

α1k +

M∑
m=1

r1mk − 1


Ψ(γ1k) − Ψ

 K∑
k′=1

γ1k′




Taking derivative with respect to α1k yield:

∂F

∂α1k
= Ψ

 K∑
k′=1

α1k

 − Ψ(α1k) + Ψ

 K∑
k′=1

γ1k

 − Ψ(γ1k)

Note that the update for α1k depends on {α1k′ , [k′]K
1 , k

′ , k}, so a closed form solution cannot be
obtained. Following [22], Newton-Raphson’s method can then be used to update the parameters. The
Hessian H is given by

H(k, k) =
∂2F

∂α2
1k

= Ψ′

 K∑
k′=1

α1k

 − Ψ′(α1k)

H(k, k′) =
∂2F

∂α1k∂α1k′
= Ψ′

 K∑
k′=1

α1k

 (k′ , k)

The update can then be obtained as follows:

αt+1
1 = αt

1 + ηH−1∇(α1) (B12)

The step-size η can be adapted to satisfy the positivity constraint for the Dirichlet parameters. Similar
method is followed for update of α2.
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C Variational Kalman Filtering

This appendix derieves a Kalman filtering based method for updating the variational distributions over
the time varying latent variables for Bayesian Affinity Estimation with Temporal Dynamics. The state
space model for these latent variables is formulated as follows:

α1,t|α1,t−1 ∼ N(α1,t|α1,t−1, δ
2
1I)

α2,t|α2,t−1 ∼ N(α2,t|α2,t−1, δ
2
2I)

βkl,t|βkl,t−1 ∼ N(βkl,t|βkl,t−1, ω
2I)

To facilitate the use of Kalman filtering in updating the linear state space model, the variational param-
eters for the time varying latent variables are assumed to be Gaussian observations of the filter:

α̂1,t|α1,t ∼ N(α̂1,t|α1,t, ν̂
2
α1,t I)

α̂2,t|α2,t ∼ N(α̂2,t|α2,t, ν̂
2
α2,t I)

β̂kl,t|βkl,t ∼ N(β̂kl,t|βkl,t, ν̂
2
βkl,t I)

We follow the analysis in [9] for updating the dynamic variational parameters using Kalman filtering.
Calculation of m̃α1,t, Ṽα1,t, m̃α2,t, Ṽα2,t, m̃βkl,t, Ṽβkl,t:
The smoothed estimators m̃α1,t, Ṽα1,t, m̃α2,t, Ṽα2,t, m̃βkl,t and Ṽβkl,t are derived by the standard Kalman
backward recursion.

m̃α1,t−1 =

 δ2
1

Vα1,t + δ2
1

 mα1,t−1 +

1 − δ2
1

Vα1,t + δ2
1

 m̃α1,t−1

m̃α2,t−1 =

 δ2
2

Vα2,t + δ2
2

 mα2,t−1 +

1 − δ2
2

Vα2,t + δ2
2

 m̃α2,t−1

m̃βkl,t−1 =

(
ω2

Vβkl,t + ω2

)
mβkl,t−1 +

(
1 −

ω2

Vβkl,t + ω2

)
m̃βkl,t−1

Ṽα1,t−1 = Vα1,t−1 +

 Vα1,t−1

Vα1,t−1 + δ2
1

2 (
Ṽα1,t − (Vα1,t−1 + δ2

1)
)

Ṽα2,t−1 = Vα2,t−1 +

 Vα2,t−1

Vα2,t−1 + δ2
2

2 (
Ṽα2,t − (Vα2,t−1 + δ2

2)
)

Ṽβkl,t−1 = Vβkl,t−1 +

(
Vβkl,t−1

Vβkl,t−1 + ω2

)2 (
Ṽβkl,t − (Vβkl,t−1 + ω2)

)

with initial conditions m̃.,T = m.,T and Ṽ.,T = V.,T . The values of m.,T and V.,T are computed by the
standard forward Kalman Filter equations as follows.
Calculation of mα1,t,Vα1,t,mα2,t,Vα2,t,mβkl,t,Vβkl,t

mα1,t,Vα1,t,mα2,t,Vα2,t,mβkl,t,Vβkl,t are computed and stored for every time step t using forward Kalman
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Filter updates. The Kalman recursion formulas are then given as follows:

mα1,t =

 ν̂2
α1,t

Vα1,t−1 + δ2
1 + ν̂2

α1,t

 mα1,t−1 +

1 − ν̂2
α1,t

Vα1,t + δ2
1 + ν̂2

α1,t

 α̂1,t (C1)

mα2,t =

 ν̂2
α2,t

Vα2,t−1 + δ2
2 + ν̂2

α2,t

 mα2,t−1 +

1 − ν̂2
α2,t

Vα2,t + δ2
2 + ν̂2

α2,t

 α̂2,t (C2)

mβkl,t =

 ν̂2
βkl,t

Vβkl,t−1 + ω2 + ν̂2
βkl,t

 mβkl,t−1 +

1 − ν̂2
βkl,t

Vβkl,t + ω2 + ν̂2
βkl,t

 β̂kl,t (C3)

Similarly the update for the variances is obtained by the following forward Kalman filtering equations:

Vα1,t =

 ν̂2
α1,t

Vα1,t−1 + δ2
1 + ν̂2

α1,t

 (Vα1,t−1 + δ2
1

)
(C4)

Vα2,t =

 ν̂2
α2,t

Vα2,t−1 + δ2
2 + ν̂2

α2,t

 (Vα2,t−1 + δ2
2

)
(C5)

Vβkl,t =

 ν̂2
βkl,t

Vβkl,t−1 + ω2 + ν̂2
βkl,t

 (Vβkl,t−1 + ω2
)

(C6)

with initial conditions specified by fixed m.,0 and V.,0. Here we notice that these equations contain the
variational observations, α̂1, α̂2, β̂kl,t, ν̂

2
α1,t, ν̂

2
α2,t and ν̂2

βkl,t
. These are computed by maximizing the lower

bound on the observed log-likelihood.
Calculation of Variational Observations: First, we introduce the standard backward recursions for
∂m̃α1,t/∂α̂1,s, ∂m̃α2,t/∂α̂2,s, and ∂m̃βkl,t/∂β̂kl,s.

∂m̃α1,t−1

α̂1,s
=

 δ2
1

Vα1,t + δ2
1

 ∂mα1,t−1

α̂1,s
+

1 − δ2
1

Vα1,t + δ2
1

 ∂m̃α1,t

α̂1,s
(C7)

∂m̃α2,t−1

α̂2,s
=

 δ2
2

Vα2,t + δ2
2

 ∂mα2,t−1

α̂2,s
+

1 − δ2
2

Vα2,t + δ2
2

 ∂m̃α2,t

α̂2,s
(C8)

∂m̃βkl,t−1

β̂kl,s
=

(
ω2

Vβkl,t + ω2

)
∂mβkl,t−1

β̂kl,s
+

(
1 −

ω2

Vβkl,t + ω2

)
∂m̃βkl,t

β̂kl,s
(C9)

with initial conditions ∂m̃α1,T/α̂1,s = ∂mα1,T/α̂1,s, ∂m̃α2,T/α̂2,s = ∂mα2,T/α̂2,s and ∂m̃βkl,T/β̂kl,s = ∂mβkl,T/β̂kl,s.
Also, ∂mα1,T/α̂1,s, ∂mα2,T/α̂2,s and ∂mβkl,T/β̂kl,s are derived by the following backward recursions.

∂mα1,t

∂α̂1,s
=

 ν̂2
α1,t

Vα1,t−1 + δ2
1 + ν̂2

α1,t

 ∂mα1,t−1

∂α̂1,s
+

1 − ν̂2
α1,t

Vα1,t + δ2
1 + ν̂2

α1,t

 δs,t (C10)

∂mα2,t

∂α̂2,s
=

 ν̂2
α2,t

Vα2,t−1 + δ2
2 + ν̂2

α2,t

 ∂mα2,t−1

∂α̂2,s
+

1 − ν̂2
α2,t

Vα2,t + δ2
2 + ν̂2

α2,t

 δs,t (C11)

∂mβkl,t

∂β̂kl,s
=

 ν̂2
βkl,t

Vβkl,t−1 + ω2 + ν̂2
βkl,t

 ∂mβkl,t−1

∂β̂kl,s
+

1 − ν̂2
βkl,t

Vβkl,t + ω2 + ν̂2
βkl,t

 δs,t (C12)
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with initial conditions ∂mα1,0/α̂1,s = 0, ∂mα2,0/α̂2,s = 0 and ∂mβkl,T/β̂kl,s = 0 where δs,t denotes
Kronecker delta. Similar backward recursions can be formulated for ∂m̃α1,t/∂ν̂1,s, ∂m̃α2,t/∂ν̂2,s, and
∂m̃βkl,t/∂ν̂kl,s. The recursive equations can be satisfied iteratively to obtain estimates of the conditional
means and variances m̃α1,t, Ṽα1,t, m̃α2,t, Ṽα2,t, m̃βkl,t, Ṽβkl,t of the Gaussian variational parameters. The
update equations for the remaining static variational parameters is expressed in terms of these Gaus-
sian parameters. Hence, following update of these parameters using the Kalman filtering technique
described above, the updates for the rest of the parameters can be obtained using lemma 3.

D Updates for Special Distributions

The following tables give updates for some special cases, often encountered in real affinity estimation
applications. For entity attributes, the updates can be obtained by plugging in the suitable inverse
cummulant functions for the updates of the corresponding natural parameters θ1k, θ2l of the family.
Similarly, suitable GLM regression and the required expected values of the missing affinities is given in
table 2.

Table 1: Important special case distributions for entity attributes
Distribution ψ(θ) ∇ψ(θ) ∇ψ−1(t)

Bernoulli log(1 + exp(θ)) (1 + exp(θ))−1 log
(

t
1−t

)
Binomial N log(1 + exp(θ)) N(1 + exp(θ))−1 log

(
t

N−t

)
Poisson exp(θ) − 1 exp(θ) log t

Gaussian θ2

2 θ t
Gamma − log(−θ) 1

θ
1
t

Table 2: Important special case distributions for affinities
Distribution βkl Update E[ymn]

Gaussian Weighted least squares
(∑K,L

k,l=1 r1mkr2nlβ
†

kl xmn

)
Bernoulli Newton Raphson’s method

(
1 + exp

(∑K,L
k,l=1 r1mkr2nlβ

†

kl xmn

))−1

Poisson Newton Raphson’s method exp
(∑K,L

k,l=1 r1mkr2nlβ
†

kl xmn

)
Binomial Newton Raphson’s method N′

(
1 + exp

(∑K,L
k,l=1 r1mkr2nlβ

†

kl xmn

))−1
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E Latent Variables based Bayesian Affinity Estimation

A taxonomy on some of the related work for Bayesian affinity estimation involving latent variables can
be described as follows.

Figure 8: Latent Variables based Bayesian Affinity Estimation
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