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Abstract

We present a framework for clustering distributed data
in unsupervised and semi-supervised scenarios, taking into
account privacy requirements and communication costs.
Rather than sharing parts of the original or perturbed data,
we instead transmit the parameters of suitable generative
models built at each local data site to a central location.
We mathematically show that the best representative of all
the data is a certain “ mean” model, and empirically show
that this model can be approximated quite well by generat-
ing artificial samples from the underlying distributions us-
ing Markov Chain Monte Carlo techniques, and then fitting
a combined global model with a chosen parametric form to
these samples. We also propose a new measure that quan-
tifies privacy based on information theoretic concepts, and
show that decreasing privacy leads to a higher quality of the
combined model and vice versa. We provide empirical re-
sults on different data types to highlight the generality of our
framework. The results show that high quality distributed
clustering can be achieved with little privacy loss and low
communication cost.

1. Introduction

Extracting useful knowledge from large, distributed data
repositories can be a very difficult task when such data
cannot be directly centralized or unified as a single file or
database either due to legal, proprietary or technical re-
strictions. This has led to the emergence of distributed
data mining techniques that try to obtain high quality in-
formation from distributed sources with minimal interac-
tions among the data sources. Most of the techniques devel-
oped so far have focused on classification or on association
rules [1, 2, 8, 13]. There has also been some work on dis-
tributed clustering for vertically partitioned data (different
sites contain different attributes/features of a common set of
records/objects) [12, 18], and on parallelizing clustering al-

gorithms for horizontally partitioned data (i.e. the objects
are distributed amongst the sites, which record the same set
of features for each object) [7]. These techniques, however,
do not specifically address privacy issues.

In this paper, we focus on the little explored problems
of clustering horizontally distributed data in unsupervised
and semi-supervised settings, taking into account various
privacy restrictions. The prototypical application scenario
is one in which there are multiple parties with confidential
databases of the same schema. The goal is to characterize
via clustering or classification, the entire distributed data,
without actually pooling this data. For example, the parties
can be a group of banks, with their own sets of customers,
who would like to have a better insight into the behavior
of the entire customer population without compromising the
privacy of their individual customers. A fundamental as-
sumption is that there is an (unknown) underlying distribu-
tion that represents the different datasets and it is possible
to learn this unknown distribution by combining high-level
information from the different sources instead of sharing in-
dividual records.

In this paper we make three main contributions. First,
we introduce a privacy preserving framework for distributed
clustering in unsupervised and semi-supervised scenarios
that is applicable to a wide variety of data types and learning
algorithms, so long as they can provide a generative model
[11]. In this framework, the parties owning the individual
data sources independently train generative models on the
local data and send the model parameters to a central com-
biner that integrates the models. This limits the amount of
interactions between the data sources and the combiner and
enables us to formulate the distributed clustering problem
in a general as well as tractable form. Second, we present
the idea that it is possible to obtain efficient solutions to op-
timization problems based on generative models by formu-
lating approximate versions of the problems using sampling
techniques, which can then be solved using existing learning
algorithms. We apply this idea to the specific problem of dis-
tributed clustering in unsupervised and semi-supervised sce-



narios to develop EM based algorithms that are guaranteed
to asymptotically converge to a global model that is locally
optimal as the sample size used to obtain the global model
goes to � . Finally, we propose a measure for quantifying
privacy based on ideas from information theory. This al-
lows us to formalize the problem of obtaining a local model
given the privacy constraints and demonstrate that there is
an asymptotic relation between the average logarithm of pri-
vacy of the local models and the KL-divergence quality cost
of the optimal model.

A word about the notation: Sets such as �������
	�	�	��
����� are
enumerated as ������� ���� � . Probability density functions of a
model � is denoted by ��� . Expectation of functions of a
random variable � following a distribution � are denoted by�����! #" 	 $ . % is used to denote objects and takes values over
the domain of data while & is used to denote class labels and� is used when a statement holds for both '(%)�*&#+ and % .

2. Problem definition

Consider a situation wherein there are multiple data
sources containing unlabeled or partially labeled data and
our aim is to obtain a combined global clustering or classifi-
cation model subject to privacy and communication restric-
tions. We will approach this distributed clustering problem
by first dividing it into two sub-problems — (i) choosing
local models based on privacy and communication restric-
tions, and (ii) combining the local models effectively to ob-
tain a “ good ” global model. In our current work, we formal-
ize the first problem by quantifying privacy and communica-
tion costs and mainly focus on solving the second problem,
assuming that the first problem is solved. This separation of
concerns obviates the need for optimizing a complicated ob-
jective function that simultaneously captures the quality of
clustering, privacy and communication costs. This approach
also allows the individual parties to use proprietary algo-
rithms and domain knowledge, and enables reuse of legacy
clusterings [18].

Let ��,-�*� ���� � be . horizontally partitioned data sources
generated by a common underlying model, �!/ and let������� ���� � be the local models obtained by applying cluster-
ing or classification algorithms to these data sources. Then,
the objective of the first sub-problem is to obtain the local
models ��� � � ��0� � , such that the constraints on the privacy
and communication costs are satisfied, i.e., 1�23�54768296.:�<;='>� � +@?BA � and CD'>� � +-6FE � � where ;='G	H+ and CD'G	H+ are the
privacy and communication cost functions discussed later in
section 5, and �
A � � ��0� � and ��E � � ���� � are the lowest allowed
privacy and highest allowed communication costs for the lo-
cal models.

For the second sub-problem, the aim is to obtain a high
quality global model that is also highly interpretable. Qual-
ity can be easily quantified in terms of how representative

the model is of the true distribution, while interpretability,
i.e., ease of understanding or describing the model, is diffi-
cult to quantify. Hence, to make the problem tractable, we
require that the global model be specified as a mixture model
based on a given parametric family (e.g., mixture of Gaus-
sians ). We call the resulting search problem of finding the
highest quality global model within this family of models
the Distributed Model-based Clustering (DMC) problem
and state it more formally below.

Let ��I��G� ���� � be non-negative weights associated with the
local models based on their importance or on the size of the
corresponding data sources. The objective of the DMC prob-
lem is to obtain the optimal global clustering model �KJL be-
longing to a given family of models M , i.e.,� JLONQPSR
T�UWV0X��Y[Z]\_^ '`� L +��
where ^ 'G	H+ is the model quality cost function defined in
terms of the local models and their weights.

2.1. Model representation

We represent both classification and clustering models in
terms of density functions. This common representation en-
ables us to define cost functions for both types of models in
a uniform manner and also leads to a systematic approach
for combining classification and clustering models. In our
scheme, a classification model, i.e., a generative model � ,
produced by a classification algorithm is specified in terms
of the joint density on the data objects % and the class labels& , � � '(%��
&#+ Nbadce � ��f " & Nhg $ji e� � � 'k%ml g +n� where ��i e� � ce � �
are the class priors, �3� � 'k%ml g +�� ce � � are the class conditional
densities, o is the number of classes and f " 	 $ is the indica-
tor function. On the other hand, a clustering model, i.e.,
a generative model � , produced by a clustering algorithm is
specified in terms of probability density �p�!'(%�+ on the data
objects % alone and is given by, � � '(%�+ N aqce � � i e� � � 'k%ml g +n�
where ��i e� � ce � � are the cluster priors, �3����'(%ml g +[� ce � � are the
cluster densities and o is the number of clusters.

2.2. Model quality

A natural definition for the quality cost, ^sr '*	 + , for a
global model, is just the “ distance” from the underlying
true model � / , i.e., ^�r '`� L + Nut '`� / �[� L +�� where t 'G	���	H+
is a suitable distance measure for models. Since � / is
not known, we instead, consider the different local models��� � � ���� � as estimators of � / with weights ��I � � ��0� � and define
the quality cost function in terms of the average distance
from the local models, i.e., ^ '>� L + Nva ���� � I � t '`� � �3� L +n�
where a ���� � I � N 4 .

Metrics based on the norms of density functions such
as the w � distance and the squared wyx distance and KL-
divergence are the commonly used distance measures for



comparing a pair of generative models. For classification
models, another suitable measure is the mismatch in the la-
belings, which reduces to the misclassification error when
one of the models being compared is the true model. Of all
these, KL-divergence is the most natural comparison mea-
sure since it is linearly related to the average log-likelihood
of the data generated by one model with respect to the other.
It is also a well-behaved differentiable function of the model
parameters unlike the other measures.

Hence, we try to optimize the quality cost function based
only on the KL-divergence measure and use other measures
only for secondary evaluation of the experimental results.
For clustering models, we consider the KL-divergence be-
tween the density functions of just the data values, i.e.,t{z�| }�~��� '>� � �3��x
+ N � w�'�������'(%!+
�����
��'(%�+*+N ���!� �!����'k%!+���� T�� � � ��'k%!+�!���S'k%!+S��� %)�
where �@� is the domain of % , and for classification mod-
els, we consider the KL-divergence between the joint
densities � � ��'k%��*&#+ and � � �]'(%)�*&#+ , i.e., t z�| �3~(~��� '`�����[� x + N� w�'�� � ��'k%��*&#+
��� � �]'k%��
&�+
+��
3. Unsupervised distributed clustering

In this section, we pose the DMC problem for an unsu-
pervised scenario as an optimization problem and propose
a practical algorithm that asymptotically converges to a lo-
cally optimal solution. The objective of the DMC problem
for an unsupervised scenario is to obtain a global model � L
belonging to a particular parametric family M such that the
quality cost function ^ '*	 + based on KL-divergence is mini-
mized, i.e.,� JL�NQPSR
T�UWV0X� Y Z]\�^ '`� L + NQPSR
T�UWV0X� Y Z]\ �� ��� � I�� t�z�| }
~��� '`���
�[� L +n� (1)

where �����G� ���� � are the local clustering models based on dif-
ferent unlabeled data sources with weights ��I���� ���� � sum-
ming to 1. This problem can be simplified using the fol-
lowing result.

Theorem 1 1 Given a set of models ��� � � ���� � with weights��I � � ���� � summing to 1, then for any model � L ,�� �0� � I�� � w�'����
��'`��+
����� Y '`��+
+ N a ��0� � I�� � w�'��!����'k��+��G���� 'k��+*+� � w�'����� '`��+
��� ��Y '`��+
+��
where  � is such that �)�� 'k��+ N¡a ���� � I � � � ��'`��+ .

1This result is true for a class of functions called Bregman divergences
[3] of which KL-divergence and squared ¢p£ distance are particular cases.

Applying the above theorem for clustering models, we
can see that the cost function in (1) is equal toa ��0� � I � t z�| }
~��� '`� � �� ��+ � t z�| }�~��� '3 ���3� L +�� The first term is inde-
pendent of � L and hence, optimizing the cost function in (1)
is equivalent to minimizing KL-divergence with respect to
the mean model  � . In the absence of constraints, the opti-
mal solution is just the mean model  � , as KL-divergence is
always non-negative and zero only when both the arguments
are equal.

The mean model also has the following nice property,
which follows from Jensen’s inequality.

Theorem 2 Given a set of models ���!��� ��0� � with weights��I]��� ���� � summing to 1 and the true model � / ,t '>� / �  ��+-6 �� �0� � I�� t '>� / �3���>+n�
where  � is such that �)�� 'k��+ N¤a ���� � I��0�!���n'`��+ and t 'G	���	H+ is
any distance function 2 that is convex in the density function
of the second model.

Since the true model � / is unknown, it is not possible to find
out which of the models �����*� ���� � is more accurate in terms
of the ideal quality cost function ^Or 'G	H+ . However, from the
above lemma, one can guarantee that the mean model will
always provides an improvement over the average quality
of the available models. When the individual models have
independent errors, the expected improvement can be con-
siderably higher. The mean model is thus a good choice in
terms of both ^ 'G	H+ and ^�r 'G	H+ , but it might not be a very in-
terpretable model as it will in general have a large number
of overlapping components. Instead, it is desirable to require
the combined model to belong to a specified parametric fam-
ily M . Therefore, we find the model in M that is closest to
the mean model in terms of KL-divergence. From Theorem
1, this is also the exact solution to the DMC problem (1).� JL�NQPSR
T�U5V�X��Y�Z]\ t{z�| }
~��� '  �)�3� L + (2)

The new optimization problem (2) is difficult to solve di-
rectly using gradient descent techniques. Therefore, we pose
an approximate version of the above problem and solve it
via Expectation-Maximization [6]. Let  , N ��%�¥]��¦¥ � � be a
dataset obtained by sampling from the mean model. Con-
sider the problem of finding the model ��§L©¨ M that maxi-
mizes the average log-likelihood of the dataset  , , i.e.,U{P�ª� Y Z]\ w�'  ,��3� L + N¤UWP]ª� Y Z]\ 4« ¦�¥ � � ��� T '�� ��Y 'k%�¥�+
+�� (3)

2Examples of distance functions that are convex in the density function
of the second argument include KL-divergence, ¢m¬ distance and squared¢�£ distance.



Algorithm 1 Unsupervised Distributed Clustering
Input: Set of models ­
®�¯>°n±¯�² ¬ with weights ­�³�¯`°n±¯�² ¬ summing to 1,

Mixture model family ´ .
Output: ®�µ¶�·¹¸nºG»�¼¾½�¿À Y3Á
ÂÄÃ ±¯�² ¬ ³ ¯(Å¾Æ`Ç È[ÉÊÌË@Í ® ¯ÏÎ ® ¶
Ð
Method:

1. Obtain mean model Ñ® such thatÒpÓÀ�ÍÕÔ ÐKÖ ±× ¯0² ¬ ³�¯ Ò À � ÍÕÔ Ð
Ø
2. Generate ÑÙ Ö ­ Ô]Ú °�ÛÚ ² ¬ from mean model, Ñ® using MCMC
sampling.
3. Apply EM algorithm to obtain the optimal model, ® µ¶ , such
that® µ¶ Ö ¸�ºG»�¼Ü¸nÝÀ Y Á�ÂßÞ Í ÑÙ Î ® ¶[ÐKÖ ¸�ºG»
¼Ü¸�ÝÀ Y Á
Â àá Û×Ú ² ¬Sâ�ã » Í Ò À Y ÍÕÔ Ú Ð�Ð
Ø

where w�'  ,ä�3� L + is the average log-likelihood of  ,
with respect to � L . As the size of the dataset  ,
goes to � , the average log-likelihood converges to
the cross entropy between the densities �m�� and ��� Y ,
i.e., åKæ¦�çÜè w�'  ,ä�[� L + N åKæ¦@çéè � �SZ �ê " ��� T '���� Y '(%!+
+Ï$ N� � �! ]ëì " ��� T '��!� Y 'k%!+*+�$>� Now, the cross entropy be-
tween any two densities is linearly related to the KL-
divergence between them, i.e.,

� � �! ]ëì " ��� T '���� Y '(%!+
+Ï$ N� � �! ]ëì " ��� T '����� '(%�+*+#í{�0� T5î  ëì�ï �
ð ì Y ï �
ð�ñ $ NQò '  ��+#í t z�| }�~��� '  �)�[� L +��
where ò '3 ��+ is the entropy of the mean model and is
independent of � L . Hence, maximizing the cross entropy
with respect to the mean model is equivalent to minimiz-
ing the KL-divergence with respect to the mean model.
The approximate problem (3), therefore converges to the
unsupervised DMC problem (2) as the size of  , goes to � .

Viewing (3) as a maximum-likelihood parameter estima-
tion problem leads to Algorithm 1. The main idea is to first
generate a dataset  , following the mean model  � , using
Markov Chain Monte Carlo (MCMC) sampling techniques
[14] and then, apply the EM algorithm to this dataset to ob-
tain the clustering model ��§Ló¨ M that maximizes its like-
lihood of being observed. The resulting model �p§L is a lo-
cal minimizer of the approximate problem and not necessar-
ily the same as the solution � JL of the original unsupervised
DMC problem (1). However, it is guaranteed to asymptoti-
cally converge to a locally optimal solution as the size of  ,
goes to � . In practice, one can use multiple runs of the EM
algorithm and pick the best solution among these so that the
obtained model is reasonably close to the globally optimal
model.

4. Semi-supervised distributed clustering

In this section, we consider the DMC problem for a semi-
supervised setting of which the unsupervised and completely
supervised scenarios are special cases. Then, as in the un-
supervised case, we pose it as an optimization problem and
present an efficient EM based algorithm to solve it.

Consider a situation where only some of the data sources
have labeled data. In this case, the objective is to use the lo-
cal classification models ���!ôp�G� �Sõ�0� � based on labeled sources
and local clustering models ���!ö)�*� ��÷��� � based on the unla-
beled data sources to obtain a global model whose compo-
nents correspond to the different classes. As in the previous
case, we minimize the KL-divergence of the global model
from the local models leading to the optimization problem,UWV0X��Y3Z]\9ø �Sõ� �0� � I]ôp� t{z�| �3~(~��� '`��ôp�3�3� L + � �S÷� ��� � I�öm� t{z�| }
~��� '`��ö)�
�3� L +�ù��

(4)
where M is a mixture model family and ��ISôp�G� � õ��� � , ��I�ö)�G� � ÷��� �
are the weights of the classification and clustering models
respectively that together sum to 1. Applying Theorem 1 for
the clustering and classification models, it is easy to see that
the semi-supervised DMC problem (4) is exactly equivalent
to a simpler problem,UWV0X��Y3Z]\ ��I�ô t{z�| �
~k~��� '  ��ô@�3� L + � I�ö t{z�| }�~��� '  ��ö��3� L +���� (5)

where I ô N a � õ�0� � I ôp� , I ö N a � ÷��� � I öm�
and the models  � ô and  � ö are such that���� õ '(%��
&#+ N �ú õ a � õ��� � I]ôp���!� õ �n'(%)�*&#+ and ���� ÷ '(%�+ N�ú ÷ a � ÷�0� � I öm� � � ÷ ��'(%!+ . When I ô Nuû , i.e., there are no
classification models, this problem reduces to the unsu-
pervised DMC problem (2) and when ISö N8û , i.e., there
are no clustering models, it reduces to a supervised dis-
tributed classification problem. For the supervised case, this
formulation is different from the usual formulation based
on the misclassification error. However, it turns out that
empirically, the most effective solution [4] for minimizing
the misclassification error given a set of classification
models is to obtain a combined classifier based on the mean
posterior probabilities, which is exactly the same as the
mean classification model  � ô under the assumption that the
data densities � � �n'k%!+ for the different classification models
are the same. This assumption is not restrictive and is in
fact usually true for distributed classification scenarios, e.g.,
bagged predictors, for which the mean posterior classifier
performs well.

We now address the simplified semi-supervised DMC
problem (5) using the following approximate version. Let ,-ô N ��'k%�ô ¥ �
&Sô ¥ +[� ¦ õ¥ � � be a labeled dataset sampled from
the mean classification model  �<ô and  ,-ö N �
%!ö ¥ � ¦ ÷¥ � �
be an unlabeled dataset sampled from the mean clustering



Algorithm 2 Semi-supervised Distributed Clustering
Input: Set of classification models ­
®�ü ¯ ° ± õ¯0² ¬ and clustering mod-

els ­
®�ý�¯>° ± ÷¯0² ¬ with weights ­�³ ü ¯>° ± õ¯0² ¬ and ­n³�ý<¯Ï° ± ÷¯�² ¬ respectively
that together sum to 1, Mixture model family ´ .

Output: ® µ¶ · ¸nºG»�¼¾½�¿À Y Á
Â ­ Ã ± õ¯�² ¬ ³ ü ¯ Å Æ`Ç þ�ÉjÉÊÌËóÍ ® ü ¯ Î ® ¶ Ð¹ÿÃ ± ÷¯0² ¬ ³�ý<¯ Å Æ`Ç È[ÉÊÌË@Í ®�ý�¯ Î ® ¶ Ð °Method:
1. Obtain mean classification model Ñ®�ü and mean clustering
model Ñ® ý such thatÒ ÓÀ õ ÍÕÔ Î�� Ð Ö à³ ü ± õ× ¯0² ¬ ³�ü ¯ Ò À õ � ÍÕÔ Î�� Ð

andÒ�ÓÀ ÷ ÍÕÔ Ð Ö à³�ý ± ÷× ¯0² ¬ ³�ý�¯ Ò À ÷ � ÍÕÔ Ð Î
where Ã ± õ¯0² ¬ ³ ü ¯ Ö ³ ü and Ã ± ÷¯0² ¬ ³�ý�¯ Ö ³�ý .
2. Generate ÑÙ ü Ö ­ ÍÕÔ ü Ú Î�� ü Ú Ð ° Û õÚ ² ¬ and ÑÙ ý Ö ­ Ô ý Ú ° Û ÷Ú ² ¬ from
the mean models, Ñ® ü and Ñ®�ý respectively so that Û õÛ ÷ Ö�� õ� ÷using MCMC sampling.
3. Apply the modified EM algorithm to obtain the optimal
model, ® µ¶ that is the solution of¸�ºG»�¼Ü¸nÝÀ Y Á�Â Þ Í ÑÙ Î ® ¶3ÐKÖ ¸�ºG»�¼Ü¸nÝÀ Y Á�Â ­�³
ü Þ Í ÑÙ ü Î ® ¶3Ð�ÿ ³ ý Þ Í ÑÙ ýÌÎ ® ¶3Ð ° Ø

model  � ö such that the sizes of the datasets, « ô and « ö
are proportional to the weights I ô and I ö and « ô � « ö N« . Now consider the problem of finding a mixture model��§L ¨ M that maximizes the average log-likelihood of the
combined dataset  , N  ,-ô��  ,-ö , i.e.,U{P�ª� Y Z]\ w�'  ,��3� L + N¤U{P]ª� Y Z]\ � I ô w�'  , ô �3� L + � I ö w�'  , ö �3� L +	�

(6)
where w�'*	0�[� L + is the average log-likelihood function with
respect to � L . Using the same relations between the log-
likelihood, cross entropy and the KL-divergence as for un-
supervised DMC, it is easy to show that the solution to the
approximate problem converges to the solution of the origi-
nal problem (5) as the size of the dataset  , goes to � .

The approximate problem is again a maximum likelihood
parameter estimation problem where we need to learn the
parameters for the mixture model that maximizes the like-
lihood of the combined dataset  
 N  ,yô��  ,-ö . This can
be easily solved using the EM framework, by assuming that
the missing data is the posterior probabilities of the mixture
components for only the objects in  , ö , i.e., the unlabeled
data objects [15]. Because of this, we only need to update
the posterior probabilities of the unlabeled data objects in
the expectation step. The maximization step remains un-
changed. This results in a modified EM algorithm that can
be used as part of the overall semi-supervised distributed
clustering algorithm (Algorithm 2).

5. Privacy and communication costs

In this section, we quantify the privacy and communi-
cation costs using ideas from information theory and also
show that there is an inverse relation between the privacy of
the local models and the quality of the mean model.

Privacy. In order to quantify privacy, we need a mea-
sure that indicates the uncertainty in predicting the original
dataset from the model. The work in [1] proposes a privacy
measure based on the differential entropy of the generating
distribution given by g '`�!+ N í
� ��� ���<'`��+��0� T x '��!�!'k��+*+ � ���where � � is the domain of � . This quantity indicates the
uncertainty in predicting the data given the model � [5], but
does not consider the privacy of a particular dataset with re-
spect to a model. For example, a model with an extremely
peaked distribution will have very low entropy, but if the
peaks do not correspond to the actual objects in the dataset,
then there is not much privacy lost. This motivates us to de-
fine a slightly different measure that considers the privacy
of the model with respect to the actual objects in the dataset.
We propose that the privacy, ;='k���3�!+ of an object � given a
model � be defined in terms of the probability of generating
the data object from the model. The higher the probability,
the lower the privacy. More specifically, noting that the re-
ciprocal of the probability is related to uncertainty [5], we
have ;='k���3�!+ N '����!'k��+*+�� � �

For vector data, ;='`�<�[��+ N 4 implies that � can be pre-
dicted with the same accuracy as a random variable with a
uniform distribution on a ball of unit volume. We can now
define the privacy, ;='����[��+ of a dataset � with respect to
the model as some function of the privacy of the individ-
ual data objects. The geometric mean has a nice interpreta-
tion as the reciprocal of the average likelihood of the dataset
being generated by the model, assuming that the individ-

ual samples are i.i.d., i.e., ;='����[��+ N���� � Z�� ���<'`��+���� �� ��� N� ï � �� � �"! �$# � | %$& �  ì ï � ð(ð �
A higher likelihood of generating the dataset from the

model implies a lower amount of privacy. For example, let
us consider vector space data being modeled by a mixture of
Gaussians. A highly detailed model with Gaussians of van-
ishing variance, centered at each of the data objects gives
away the entire dataset and has no privacy. This is to be ex-
pected as the probability density �p�<'`��+ goes to � , for all
data objects � ¨ � making the privacy measure go to û(' .
On the other hand, a very coarse model, say with a single
Gaussian with high variance has a low likelihood of gener-
ating the data and hence, has a high privacy.

Intuitively, if the local models are more detailed, the com-
bined model can be improved at the cost of decreased pri-
vacy. In particular, using the weak law of large numbers
and Chebyshev inequality [16], it can be shown that the av-
erage log-privacy of the local models converges to their av-
erage cross-entropy with a high probability when the sizes



of the individual datasets are large enough. Since the aver-
age cross entropy is linearly related to the KL-divergence
between the mean model and the true model, there ex-
ists an asymptotic linear relation between the average log-
privacy and ideal quality cost of the mean model, i.e.,a ���� � I � �0� T 'Õ;=')� � �[� � +*+ � ò '`� / ++* � w�'�� �-, '`��+
������ '`��+
+ N^ r '3 ��+�� where  � is the mean model. As the privacy of the
local models increases, the ideal quality cost of the mean
model, which is the optimal model with no constraints, also
goes up.

Communication cost. To quantify the communication
cost CD'`�!+ , we consider the number of bits or words required
to unambiguously specify the model to the central combiner.
When the generative model family is already known to the
central combiner, then one needs to only consider the cost
of specifying the values of the parameters. A more formal
definition would be to consider the Kolmogorov complexity
[5] or the minimum description length of the local model,
i.e., CD'`�!+ NQ�/. '>��+n�
6 Experimental evaluation

In this section, we provide empirical evidence that for
a reasonable global sample size and privacy level and a few
runs of the EM algorithm, the global model obtained through
our approach is as good as or better than the best local
model for different types of data not only in terms of KL-
divergence but also for other distance measures. We also
present results that show how the privacy, communication
and quality costs vary with the resolution of local models.

We performed experiments on the four different types of
data shown in Table 1. Artificial data was preferred since
the true generative models is known, unlike in the case
of real data, and one can perform controlled experiments
to better understand algorithmic properties. In order to
generate the data, we chose, for each run of the experiment,
a mixture model with a fixed number (=5) of components
and used it to create a collection of datasets of equal
size by sampling independently using MCMC techniques.
These datasets and models can be downloaded from
http://www.lans.ece.utexas.edu/˜srujana
/gencl/data.

We empirically found that our approach is more benefi-
cial when the number of clusters as well as the learning al-
gorithms applied to the individual data sites are different, as
this creates diversity in the models. However, since in this
work our emphasis is not on the model selection problem,
we present results obtained by applying the same learning
algorithm to all the sites. For the unlabeled datasets, we used
EM algorithms based on mixture models of the appropriate
type. For the labeled datasets, we estimated the parameters
of the class conditional distributions using maximum like-
lihood estimation (MLE) methods. The EM algorithms at

Table 1. Details of generative models and
datasets for different data types.

Data Type Model Type #Dim/Seq. Total Data #Sites #Runs
Length Size (N)

Vector Gaussian
Full-covariance 8 5000 5 10

Directional von Mises-
Fisher 100 5000 5 10

Discrete Discrete HMM
sequence 5 states 30 1000 5 5

4 symbols
Continuous Cont. HMM
sequence 5 states 30 600 3 5

4 mixtures

both the local and global level were run multiple times and
the best solution was chosen in order to reduce the probabil-
ity of getting stuck in local minima.

For each setting, we computed the privacy and commu-
nication costs of the local models and the ideal quality cost
functions based on the various distance measures listed in
section 2. Distance measures that are integrals were esti-
mated by averaging over 10,000 samples drawn from the
appropriate distributions. The centralized model obtained
using the union of all the datasets was used as the reference
for each experiment.

6.1 Results and discussion

We applied our algorithm to different types of data in
both unsupervised and semi-supervised settings choosing
the global MCMC sample size to be equal to the combined
size of all the data sources and the local model resolution
to be the same as that of the true model. We also studied
how the quality of the global model varies with the global
sample size, the resolution of the local models and the per-
centage of labeled data by performing experiments on the
Euclidean vector datasets.

Quality of global model. Figure 1 shows the quality
of the different models for all four data types, in a fully un-
supervised setting. The rows 1-4 correspond to the results
on Gaussian, directional, discrete and continuous sequence
data respectively. The black bar represents the average value
and the white bar represents the standard deviation. In all
the cases, the global model performs better than the best lo-
cal model. Moreover, the global model quality is in general
closer to the quality of the centralized model than the aver-
age quality of the local models. Figure 2 shows the quality
of the different models in a semi-supervised setting.

The mean model in this setting is the mean classification
model obtained by combining only the local classification
models. Once again, the global model provides better qual-
ity than any of the local classification models. Sometimes,
it is even better than that of the mean classification model,
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Figure 1. Global model quality for different
types of data in an unsupervised setting.
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Figure 2. Global model quality for different
types of data in a semi-supervised setting.

underscoring the effectiveness of using unlabeled data for
improving the performance of classification models.

Variation of global model quality with sample size.
For a fair comparison, we chose the global sample size to
be equal to the combined size of all the data sources for
the previous experiments. However, theoretical results indi-
cate that we can obtain a better quality model with a higher
sample size. In order to test this hypothesis, we ran our
algorithm multiple times on the Euclidean vector datasets
changing only the global sample size. Figure 3 shows how
the quality of the different models vary with the sample size
in an unsupervised setting. As one may expect, the quality
of the global model improves with the number of artificially
generated samples, with diminishing returns after a point.
The behavior is similar for semi-supervised settings as well.

Variation of privacy, communication and quality cost
with model resolution. An important aspect of the our clus-
tering framework is the trade-off between privacy, commu-
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Figure 3. Variation of global model quality with
sample size.

nication restrictions and the quality of the combined model
obtained. This trade-off can be controlled by picking a suit-
able model resolution, e.g., number of clusters/classes. Fig-
ure 4 shows the variation of the average log-privacy, com-
munication and quality cost with the number of clusters in
the local models for Euclidean vector datasets. The behav-
ior is similar for semi-supervised settings as well. From the
plots, we note that the average log-privacy as well as the
quality costs decrease as the number of clusters increases,
while the communication cost goes up. At a thousand clus-
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Figure 4. Variation of privacy, cluster quality
and communication cost with respect to base
model resolution.

ters/location (i.e. one cluster per point) there is maximum
loss of privacy, but because of the natural clusters in the data,
comparable cluster quality can be obtained much before this
limiting value, i.e., at a much lesser privacy cost.

Variation in model quality with percentage of labeled
data. Figure 5 shows the quality of the models obtained us-
ing different number of local classification models on Eu-
clidean vector data, i.e., different percentages of labeled
data. From the figure, we note that the quality costs of the
mean classification model as well as global model decrease
as the number of classification models increases. Another
interesting trend is that the global model performs better
than the mean classification model when the percentage of
labeled data is less but becomes relatively worse as the per-
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Figure 5. Variation in the model quality with
percentage of labeled data.

centage of labeled data increases. This shows that it might
be beneficial to use unlabeled data for improving classifi-
cation models when there is very little labeled data. On the
other hand, there is little utility in using unlabeled data when
there is significant amount of labeled data.

7 Related work

Our distributed clustering technique relies on combining
multiple parametric models. Other works of similar flavor
applied to different settings include stacking for density esti-
mation [17], distributed cooperative Bayesian learning [19].
However, in all these cases the emphasis is on quality and
robustness rather than interpretability or privacy.

A simple example of integrating multiple generative
models for clustering is the combining of the sets of means
obtained through multiple o -means solutions. This has been
studied in a variety of settings [9, 10], all of which are re-
stricted to vector data. In contrast, our framework applies
to arbitrary generative clustering models, hence covering a
wide range of complex data types encountered in data min-
ing.

In works that focus on privacy-preserving data mining,
often individual records or attributes are subjected to a “pri-
vacy preserving” transformation and the goal is to obtain
useful information from such transformed data. Classifica-
tion and association rule techniques for this scenario have
been proposed in [1, 2, 8]. These approaches are also re-
stricted to vector data because of an add operator require-
ment. Another setting is an inter-enterprise data mining sce-
nario such as the one considered in this paper, where mul-
tiple parties with confidential databases want to apply data
mining algorithms to the union of their databases. There is
very little literature in this area, a notable exception being
the cryptographic method for enabling a secure two party
computation for performing the ID3 decision tree algorithm

in [13].
Acknowledgments This work was supported in part by

NSF grants IDM-0307792 and ITR-0312471. We would
also like to thank Arindam Banerjee and Ravi Koku for their
helpful suggestions.

References

[1] D. Agrawal and C. C. Aggarwal. On the design and quan-
tification of privacy preserving data mining algorithms. In
Symposium on Principles of Database Systems, 2001.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining.
In ACM SIGMOD, pages 439–450, 2000.

[3] K. S. Azoury and M. K. Warmuth. Relative loss bounds for
on-line density estimation with the exponential family of dis-
tributions. Machine Learning, 43(3):211–246, 2001.

[4] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[5] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. Wiley, 1991.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum likelihood from incomplete data via the EM algo-
rithm. J. Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977.

[7] I. S. Dhillon and D. S. Modha. A data-clustering algorithm
on distributed memory multiprocessors. In ACM SIGKDD,
1999.

[8] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Pri-
vacy preserving mining of association rules. In KDD, 2002.

[9] U. M. Fayyad, C. Reina, and P. S. Bradley. Initialization of
iterative refinement clustering algorithms. In ICML, pages
194–198, 1998.

[10] A. L. N. Fred and A. K. Jain. Data clustering using evidence
accumulation. In ICPR, pages IV:276–280, 2002.

[11] J. Ghosh. Scalable clustering methods for data mining. In
N. Ye, editor, Handbook of Data Mining, pages 247–277.
Lawrence Erlbaum, 2003.

[12] E. Johnson and H. Kargupta. Collective, hierarchical clus-
tering from distributed, heterogeneous data. In M. Zaki and
C. Ho, editors, Large-Scale Parallel KDD Systems, volume
1759 of LNCS, pages 221–244. Springer-Verlag, 1999.

[13] Y. Lindell and B. Pinkas. Privacy preserving data mining.
LNCS, 1880:36–77, 2000.

[14] R. M. Neal. Probabilistic inference using Markov Chain
Monte Carlo methods. Technical Report CRG-TR-93-1,
Dept. of Computer Science, University of Toronto, 1993.

[15] K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text
classification from labeled and unlabeled documents using
EM. Machine Learning, 39(2/3):103–134, 2000.

[16] A. Papoulis. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, New York, 1984.

[17] P. Smyth and D. Wolpert. An evaluation of linearly com-
bining density estimators via stacking. Machine Learning,
36(1/2):53–89, July 1999.

[18] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge
reuse framework for combining partitionings. JMLR, pages
3:583–617, 2002.

[19] K. Yamanishi. Distributed cooperative Bayesian learning
strategies. Information and Computation, 150:22–56, 1998.


