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Abstract— We introduce a general framework for inter-
enterprise distributed data mining that takes into account
privacy requirements. It is based on building probabilistic or
generative models of the data at each local site. The parameters
of these models are then transmitted to a central location instead
of the original or perturbed data. We mathematically show that
the best representative of all the local models is a certain “
mean” model, and empirically show that this model can be
approximated quite well by generating artificial samples from
the underlying distributions using Markov Chain Monte Carlo
techniques, and then fitting a combined global model with a
chosen parametric form to these samples. We also propose
a new measure that quantifies privacy based on information
theoretic concepts, and show that decreasing privacy leads to a
higher quality of the combined model and vice versa. Empirical
results on (distributed) clustering and classification - two of the
most fundamental data mining procedures - are provided on
different kinds of datasets consisting of vectors, variable length
sequences and high dimensional directional data, to highlight
the generality of our framework. The results show that high
quality global models can be achieved with little loss of privacy.

I. INTRODUCTION

While data mining and pattern recognition algorithms
invariably operate on centralized data, usually in the form
of a single flat file, in practice, related information is often
acquired and stored at geographically distributed locations
due to organizational or operational constraints. Central-
ization of such data before analysis may not be desirable
because of computational or bandwidth costs. In some cases,
it may not even be possible due to variety of real-life
constraints including security, privacy, proprietary nature of
data/software and the accompanying ownership and legal
issues. The relevance of such constraints has become very
evident of late as several agencies attempt to integrate their
databases and analytical techniques, prompting much interest
in distributed data mining (DDM).

Most of the DDM techniques developed so far have
focused on classification or on association rules [1], [3],
[6], [8]. There has also been some work on distributed
clustering for vertically partitioned data (different sites
contain different attributes/features of a common set of
records/objects) [7], [12], and on parallelizing clustering
algorithms for horizontally partitioned data (i.e. the objects
are distributed amongst the sites, which record the same
set of features for each object) [5]. These techniques, how-
ever, do not specifically address privacy issues. In contrast,
privacy-preserving data mining techniques typically involve
(i) query restriction, which is highly manual, or (ii) subjecting
individual records or attributes to a “privacy preserving”
perturbation and subsequently try to recover the original data.

Most of these approaches are restricted to vector data and are
applicable only in settings where a central party is collecting
individual records that need to be protected.

In this paper we focus on a distributed inter-enterprise
data mining setting, taking into account various privacy
restrictions. The prototypical application scenario is one in
which there are multiple parties with confidential databases
of the same schema. The goal is to characterize (for example,
to perform clustering or classification) the entire distributed
data, without actually first pooling this data. For example,
the parties can be a group of banks, with their own sets
of customers, who would like to have a better insight
into the behavior of the entire customer population without
compromising the privacy of their individual customers.
A fundamental assumption is that there is an (unknown)
underlying distribution that represents the different datasets
and it is possible to learn this unknown distribution by
combining high-level information from the different sources
instead of sharing individual records.

The approach that we propose is very generic, applicable
to a wide range of data types and data mining procedures. It
is based on building generative models on each of the local
data sources and combining them centrally using only the
model parameters and a minimum amount of supplementary
data if need be. Instances of this approach are found in a few
recent works including stacking for density estimation [11],
where the combined model was empirically shown to be more
accurate than the base models, and distributed cooperative
Bayesian learning approach [13], where different Bayesian
agents estimate the parameters of the target distribution and
a meta-learner combines the outputs of these agents to obtain
the final parameters. In our work, the combined global model
is obtained from the “virtual samples” generated by the local
models, using Monte Carlo Markov Chain sampling tech-
niques. We prefer to use generative models for representing
the local data sources as they provide a better understanding
of the data distribution and are also more suited for a privacy-
preserving setting.

A word about the notation: Sets such as �������	�	�
�������� are
enumerated as ������� ����� . Probability density functions of a
model � is denoted by ��� . Expectation of functions of a
random variable � following a distribution � are denoted by������ "! � # . $ is used to denote objects and takes values over
the domain of data while % is used to denote class labels and
� is used when a statement holds for both &'$(��%") and $ .

II. PROBLEM DEFINITION

There are two broad approaches to distributed learning.
The first approach employs data-parallel methods [5] that



are susceptible to privacy breaches. Besides, it is difficult to
quantify the privacy provided by these parallel algorithms.
The second approach involves building models locally and
then combining them at a central location to obtain a more
accurate model [3], [13]. This approach enables easy analysis
of privacy costs in terms of the local model that is shared
with the central location. Moreover, it allows the individual
parties to use proprietary algorithms and domain knowledge,
and enables reuse of legacy models [12].

In this paper, we adopt the second approach. We divide
the distributed learning problem into two sub-problems —
(i) choosing local models based on privacy restrictions,
and (ii) combining the local models effectively to obtain
a “good” global model. In our current work, we formalize
the first problem by quantifying privacy costs and mainly
focus on solving the second problem, assuming that the first
problem is solved. This separation of concerns obviates the
need for optimizing a complicated objective function that
simultaneously captures the quality of model, privacy costs.

Let ��� � � ����� be � horizontally partitioned data sources
generated by a common underlying model, ��� and let
����� � � � � be the local models obtained by applying clustering
or classification algorithms to these data sources. Then, the
objective of the first sub-problem is to obtain the local models
����� � � � � , such that the constraints on the privacy costs are
satisfied, i.e., �������
	���	�� �� & ����)���� � where  & � ) is the
privacy cost function discussed in section 4, and ��� � � ����� are
the lowest allowed privacy costs for the local models.

For the second sub-problem, the aim is to obtain a high
quality global model that is also highly interpretable. Quality
can be easily quantified in terms of how representative the
model is of the true distribution, while interpretability, i.e.,
ease of understanding or describing the model, is difficult to
quantify. Hence, to make the problem tractable, we require
that the global model be specified as a mixture model based
on a given parametric family (e.g., mixture of Gaussians ).
We call the resulting search problem of finding the highest
quality global model within this family of models the Dis-
tributed Model-based Learning (DML) problem and state
it more formally below.

Let ����� � � ��� be non-negative weights associated with the
local models based on their importance or on the size of
the corresponding data sources. The objective of the DML
problem is to obtain the optimal global model ���� belonging
to a given family of models � , i.e.,

� �������� �"!$#&%��')(�*
+ & � � ) � (1)

where
+ & � ) is the model quality cost defined in terms of the

local models and their weights.

A. Model Representation

We represent both classification and clustering models
in terms of density functions. This common representation
enables us to define cost functions for both types of models in
a uniform manner and also leads to a systematic approach for
solving both the distributed clustering and classification prob-
lems. In our scheme, a classification model, i.e., a generative

model � , produced by a classification algorithm is specified
in terms of the joint density on the data objects $ and the
class labels % , � � &'$(� % ) �-,/.0 ���21 ! % �43 #65 0� � � &'$87 3 ) � where
�95 0� � .0 ��� are the class priors, ��� � & $:7 3 )�� .0 ��� are the class
conditional densities, ; is the number of classes and 1 ! � # is the
indicator function. On the other hand, a clustering model,
i.e., a generative model � , produced by a clustering algorithm
is specified in terms of probability density � ��& $�) on the data
objects $ alone and is given by, � � & $�) � ,/.0 ��� 5 0� � ��& $:7 3 ) �
where �95 0� � .0 ��� are the cluster priors, ��� � &'$87 3 ) � .0 ��� are the
cluster densities and ; is the number of clusters.

B. Model Quality

A natural definition for the quality cost,
+=< & � ) , for a global

model, is simply the “ distance” from the underlying true
model �>� , i.e.,

+?< & � � ) �A@ & �B� � � � ) � where @ & ���	� ) is a
suitable distance measure for models. Since ��� is not known,
we instead, consider the different local models ����� � ����� as
estimators of �>� with weights ��� � � ����� and define the quality
cost function in terms of the average distance from the local
models, i.e.,

+ & � � ) ��, � � � � � @ & � � ��� � )DC
Metrics based on the norms of density functions such

as the E � distance and the squared EGF distance and KL-
divergence are the commonly used distance measures for
comparing a pair of generative models. For classification
models, another suitable measure is the mismatch in the
labelings, which reduces to the misclassification error when
one of the models being compared is the true model. Of all
these, KL-divergence is the most natural comparison measure
since it is linearly related to the average log-likelihood of
the data generated by one model with respect to the other. It
is also a well-behaved differentiable function of the model
parameters unlike the other measures. Hence, we optimize
the quality cost function based on the KL-divergence and
use other measures only for secondary evaluation of the
experimental results. For clustering models, we consider the
KL-divergence between the density functions of just the
data values, i.e., @IHKJ LNMO�P & � � ���>F�) �RQ E & � ��S & $�)NT � ��U &'$ ) ) and
for classification models, we consider the KL-divergence
between the joint densities � ��S & $�� % ) and � ��U &'$(��%") , i.e.,
@VHKJ W MXMO�P & ������� F ) ��Q E & � � S &'$(� % )9T � � U &'$(��%")�) .

III. DISTRIBUTED MODEL-BASED LEARNING

In this section, we first pose the DML problem as an
optimization problem and present an approximation using
sampling techniques. Then, we propose practical algorithms
to efficiently address this approximate problem for the dis-
tributed clustering and classification scenarios.

The objective of the DML problem is to obtain a global
model � � belonging to a particular parametric family � such
that the quality cost function

+ & � ) based on KL-divergence
is minimized, i.e.,

� �� �/��� �"!$#Y%��'Z(�*
+ & � � ) �/�"�[�\!$#Y%��'Z(�*

]
����� ��� @ O�P & ��� � � � ) � (2)

where ��� � � ����� are either the local clustering models or local
classification models based on different data sources with
weights ��� � � ����� summing to 1 and @ O�P is either @IHKJ LNMO�P or



@VHKJ W[M MO�P depending on whether it is a clustering or classification
scenario. This problem can be simplified using the following
result.

Theorem 1 1 Given a set of models ��� � � � ��� with weights
����� � ����� summing to 1, then for any model � � ,]
����� � � Q E & � � � &'� )NT � � '�&'� ) ) � , ����� � � Q E & � � � & � )9T ���� &'� ) )� Q E & ���� & � )9T � ��'�&'� ) ) �
where

�� is such that ���� &'� ) � , � ��� ��� � � � &'� ) .
Applying the above theorem, we can see that the cost
function in (2) can be written as]

����� � � @ O�P & � � � � � ) �
]
� ��� � � @ O�P & � � � ���) � @ O�P & ���� � � ))C

The first term on the right is independent of � � and hence,
optimizing the cost function in (2) is equivalent to minimiz-
ing KL-divergence with respect to the mean model

�� . In the
absence of any constraints, the optimal solution is just the
mean model

�� , as KL-divergence is always positive and equal
to zero only when both the arguments are equal. The mean
model also has the following nice property, which follows
from Jensen’s inequality.

Theorem 2 Given a set of models ��� � � � ��� with weights
����� � ����� summing to 1 and the true model � � ,

@ & � � � ���) 	
]
����� ��� @ & � � ��� ��) �

where
�� is such that ���� &'� ) � , � � � ��� � � � &'� ) and @ & ���	� ) is

any distance function 2 that is convex in the density function
of the second model.

Since the true model � � is unknown, it is not possible to find
out which of the models ��� � � ����� is more accurate in terms
of the ideal quality cost function

+ < & � ) . However, from the
above theorem, one can guarantee that the mean model will
always provides an improvement over the average quality
of the available models. When the individual models have
independent errors, the expected gain can be considerably
higher. The mean model is thus a good choice in terms of
both

+ & � ) and
+?< & � ) , but it might not be a very interpretable

model as it will, in general, have a large number of over-
lapping components. Instead, it is desirable to require the
combined model to belong to a specified parametric family
� . Therefore, we find the model in � that is closest to the
mean model in terms of KL-divergence. From Theorem 1,
this is also the exact solution to the DML problem (2), i.e.,

� �������� �"!$#&%� ' (�* @ O�P & ������ � ) (3)

The new optimization problem (3) is difficult to solve

1This result is true for a class of functions called Bregman divergences
of which KL-divergence and squared �	� distance are particular cases.

2Examples of distance functions that are convex in the density function
of the second argument include KL-divergence, ��
 distance and squared��� distance.

Algorithm 1 Distributed Clustering
Input: Set of clustering models

���� ������ 
 with weights
����� ������ 


summing to 1, Mixture model family � .
Output:

����� ��!#"�$&%(') '+*�, - ���� 
 � �/.&021 354687:9  �<;  �>=
Method:

1. Obtain mean model ? such that

@BA) 9DC =�EF�G ��� 
 � � @ ) � 9DC =+H
2. Generate ?I E � CKJ ��LJ � 
 from mean model, ? using MCMC
sampling.
3. Apply EM algorithm to obtain the optimal model,

M��
, such

that �� E ��!#"�$N��O) '>*�,QP 9 ?I ;  � =RE ��!#"�$N��O) '>*�,
ST LGJ � 
VUXW " 9 @ ) ' 9DC J =Y=+H

directly using gradient descent techniques. Therefore, we
pose an approximate version of the above problem and solve
it efficiently via maximum likelihood estimation methods.
Let

�Z � ����[���\[�� � be a dataset, either labeled ( ��[ � & $][�� %^[�) )
or unlabeled ( ��[ � $�[ ), obtained by sampling from the mean
model. Consider the problem of finding the model �	_�a` �
that maximizes the average log-likelihood of the dataset

�Z
,

i.e.,

� _�=����� �"!V�Kb� ' (�* E & �Z � � � ) �/�"�[�\!V�cb� ' (�*
�d \]
[���� e�f � & � ��'�& ��[�) ) �

(4)
where E & �Z � � � ) is the average log-likelihood of

�Z
with

respect to � � . As the size of the dataset
�Z

goes to g ,
the average log-likelihood converges to the cross entropy
between the densities ���� and � � ' , i.e., hRi\kjNl E & �Z ��� � ) �h	i\kjNl � � ( �m ! e�f � & � � '�&'� ) ) # � � ���� cno ! e�f � & � � '�&'� ) ) # . Now, the
cross entropy between any two densities is linearly related to
the KL-divergence between them, i.e.,

� � �  no ! e�f � & � ��'�& � )�)�# ������� no ! e�f � & ���� &'� ) )qp e�f �sr  nout �5v o ' t �5v�w # �yx & ���)qp @ O�P & ���� � � ) ,
where x & �� ) is the entropy of the mean model and is
independent of � � . Hence, maximizing the cross entropy
with respect to the mean model is equivalent to minimizing
the KL-divergence with respect to the mean model. The
approximate problem (4), therefore converges to the original
DML problem (3) as the size of

�Z
goes to g . Viewing (4) as

a maximum-likelihood parameter estimation problem leads to
efficient algorithms for addressing the distributed clustering
and classification problems.

A. Distributed Clustering

For the clustering scenario, we address the approximate
DML problem (4) using the Expectation-Maximization (EM)
framework. The main idea is to first generate an unlabeled
dataset

�� following the mean model
�� , using Markov Chain

Monte Carlo (MCMC) sampling techniques [9] and then,
apply the EM algorithm to this dataset to obtain the clustering
model ��_� ` � that maximizes its likelihood of being
observed. The resulting model � _� is a local minimizer of
the approximate problem and not necessarily the same as the



solution �2�� of the original DML problem (2). However, it is
guaranteed to asymptotically converge to a locally optimal
solution as the size of

�� goes to g . In practice, one can use
multiple runs of the EM algorithm and pick the best solution
among these so that the obtained model is reasonably close
to the globally optimal model.

B. Distributed Classification

For the classification scenario, we obtain a similar algo-
rithm (Algorithm 2). The only difference being that it is now
possible to directly obtain the maximum likelihood estimates
(MLE), without using the EM algorithm as we now have ac-
cess to labeled data. As before, we generate a labeled dataset�� from the mean model

�� using MCMC sampling and then,
estimate the parameters of the classification model �	_� ` �
that maximizes the likelihood of observing

�� . Usually, the
approximate distributed classification problem is convex in
nature, ensuring that the resulting model �B_� is the global
minimizer, which is guaranteed to asymptotically converge
to the optimal solution of the original DML problem as the
size of

�� goes to g .
Note that our formulation of the distributed classification

problem is different from the usual formulation based on
the misclassification error. However, it turns out that em-
pirically, the most effective solution [2] for minimizing the
misclassification error given a set of classification models is
to obtain a combined classifier based on the mean posterior
probabilities, which is the same as the mean model

�� , i.e., the
unconstrained optimal solution, under the assumption that the
data densities ��� � & $ ) for the different classification models
are the same. This assumption is not restrictive and is in
fact usually true for distributed classification scenarios, e.g.,
bagged predictors, for which the mean posterior classifier
performs well.

IV. PRIVACY COSTS

In this section, we quantify the privacy cost using ideas
from information theory and also show that there is an inverse
relation between the privacy of the local models and the
quality of the mean model.

In order to quantify privacy, we need a measure that indi-
cates the uncertainty in predicting the original dataset from
the model. The work [1] proposes a privacy measure based
on the differential entropy of the generating distribution given
by 3 & ��) � p������ � � &'� ) e�f � F & � � &'� ) )�� � , where � � is the
domain of � . This quantity indicates the uncertainty [4] in
the distribution of the model � , but does not consider the
privacy of a particular dataset with respect to a model. For
example, a model with an extremely peaked distribution will
have very low entropy, but if the peaks do not correspond
to the actual objects in the dataset, then there is not much
privacy lost. This motivates us to define a slightly different
measure that considers the privacy of the model with respect
to the actual objects in the dataset. We propose that the
privacy,  & � ����) of an object � given a model � be defined
in terms of the probability of generating the data object from
the model. The higher the probability, the lower the privacy.
More specifically, noting that the reciprocal of the probability

Algorithm 2 Distributed Classification
Input: Set of classification models

��Y� ������ 
 with weights
����� ������ 


summing to 1, Mixture model family � .
Output:

 �� � ��!#"�$&%(') '+*�, - ���� 
 ��� . 021 	Y4 4687 9 M� ;  � =
Method:

1. Obtain mean model ? such that

@BA)�9DC ;�
 =�EF�G ��� 
 � � @ ) � 9DC ;�
 =+H
2. Generate a labeled set ?I E � 9DC J ;�
 J = � LJ � 
 from mean model,? using MCMC sampling.
3. Apply MLE methods to obtain the optimal model,

M��
, such

that �� E ��!#"�$N��O) '+*�, P 9 ?I ;  �5=RE ��!#"�$N��O) '+*�,
ST LGJ � 
uUXW " 9 @ ) ' 9DCKJ ;�
 J =Y=+H

is related to uncertainty [4], we have  & � ����) � & � � & � )�)� � .
For vector data,  & � ����) � � implies that � can be

predicted with the same accuracy as a random variable with
a uniform distribution on a ball of unit volume. We can now
define the privacy,  & Z � � ) of a dataset

Z
with respect to

the model as some function of the privacy of the individual
data objects. The geometric mean has a nice interpretation as
the reciprocal of the average likelihood of the dataset being
generated by the model, assuming that the individual samples
are i.i.d., i.e.,

 & Z ����) �
���
� ( m � ��&'� )���� S� ��� ��� t � S� ����� ��� � J ��� U  o t �5v v C

A higher likelihood of generating the dataset from the model
implies a lower amount of privacy. For example, let us
consider vector space data being modeled by a mixture
of Gaussians. A highly detailed model with Gaussians of
vanishing variance, centered at each of the data objects gives
away the entire dataset and has no privacy. This is to be
expected as the probability density ��� & � ) goes to g , for all
data objects � ` Z making the privacy measure go to �! .
On the other hand, a very coarse model, say with a single
Gaussian of high variance has a low likelihood of generating
the data and hence, has a high privacy.

A. Relationship with Model Quality

Intuitively, if the local models are more detailed, the com-
bined model can be improved at the cost of decreased privacy.
In particular, there is a linear relation between the average
logarithm of privacy (log-privacy) of the local models and
the quality of the optimal mean model. Using the weak law
of large numbers and Chebyshev inequality [10], it can be
shown that the log-privacy of the local models, ��� converges
to the cross-entropy between � � � and the true distribution,
� �#" , when the size of the individual data sources tend tog . As a result, the average log-privacy of the local models
converges to their average cross-entropy, which is linearly
related to the KL-divergence between the mean model and
the true model, i.e., when the sizes of the individual datasets



TABLE I

DETAILS OF GENERATIVE MODELS AND DATASETS.

Data Type Model Type #Dim/Seq. Total Data #Sites
Length Size (N)

Vector Gaussian
Full-covariance 8 5000 5

Directional von Mises-
Fisher 100 5000 5

Discrete Discrete HMM
sequence 5 states 30 1000 5

4 symbols
Continuous Cont. HMM
sequence 5 states 30 600 3

4 mixtures

are large enough, then with a high probability,
]
����� ��� e�f � &  & Z � ��� ��) ) � x & � � )�� Q E & � � " &'� )NT ���� &'� ) )

� +?< & ���) �
where

�� is the mean model. As the privacy of the local
models increases, the ideal quality cost of the mean model,
which is the optimal model with no constraints, also goes
up. On the other hand, when the privacy of the local models
decreases, the mean model tends to be more accurate.

V. EXPERIMENTAL EVALUATION

In this section, we provide empirical evidence that for a
reasonable global sample size and privacy level, the global
model obtained through our approach is as good as or better
than the best local model for different types of data not
only in terms of KL-divergence but also for other distance
measures. We also present results that show how the privacy
and quality costs vary with the resolution of local models.

A. Datasets and Learning Algorithms

We performed experiments on four different types of data
shown in Table V-A. Artificial data was preferred since the
true generative models is known, unlike in the case of real
data, and one can perform controlled experiments to better
understand algorithmic properties. In order to generate the
data, we chose, for each run of the experiment, a mixture
model with a fixed number (=5) of components and used it
to create a collection of datasets of equal size by sampling
independently using MCMC techniques. These datasets were
then used as the distributed data sources for training the local
clustering or classification models.

We empirically found that our approach is more beneficial
when the learning algorithms applied to the individual data
sites are different, as this creates diversity in the models.
However, since our emphasis here is not on the model
selection problem, we present results obtained by applying
the same learning algorithm to all the sites. For the unla-
beled datasets, we used EM algorithms based on mixture
models of the appropriate type. For the labeled datasets, we
estimated the parameters of the class conditional densities
using maximum likelihood estimation (MLE) methods. The
EM algorithms at both the local and global level were run
multiple times and the best solution was chosen so as to
reduce the probability of getting stuck in local minima.
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Fig. 1. Variation of global model quality with sample size in a clustering
scenario.
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Fig. 2. Variation of global model quality with sample size in a classification
scenario.

B. Performance Metrics

For each setting, we computed the privacy costs of the
local models and the ideal quality costs based on the various
distance measures mentioned in section 2. Distance measures
that are integrals were estimated by averaging over 10,000
samples drawn from the appropriate distributions. The cen-
tralized model obtained using the union of all the datasets
was used as the reference for each experiment.

C. Results and Discussion

We first studied the performance of our distributed learning
algorithms on the Euclidean vector datasets for different
choices of global MCMC sample size and local model res-
olution. Based on these experiments, we chose good values
for the global sample size and model resolution and applied
our algorithms to different data types in both clustering and
classification settings.

1) Variation of Global Model Quality with MCMC Sam-
ple size: An important step in our model-based learning
approach is choosing the global MCMC sample size. The-
oretical results indicate that the quality of model tends to
improve as the sample size increases to g . In order to test
this hypothesis, we ran our algorithm multiple times on the
Euclidean vector datasets changing only the global sample
size. Figures 1 and 2 shows how the quality of the different
models vary with the sample size for in a clustering and
classification scenario respectively. In both the cases, the
quality of the global model improves with the number of
artificially generated samples, with diminishing returns after
a point. The global model quality tends to be about the same
as that of the average model when the global sample size
is equal to that of the individual data sources and steadily
becomes better. When the sample size increases to that of
the combined size of all the data sources, the global model
is better than even the best of the local models.
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Fig. 3. Variation of privacy and cluster quality w.r.t base model resolution.
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1: GLOBAL, 2: AVERAGE, 3: MINIMUM, 4: MAXIMUM, 5: MEAN, 6: CENTRALIZED

Fig. 4. Global model quality for different types of data in a clustering
scenario. The rows 1-4 correspond to the results on Gaussian, directional,
discrete and continuous sequence data respectively. The black bar represents
the average value and the white bar represents the standard deviation.

2) Variation of Privacy and Quality cost with Model Res-
olution: Another significant aspect of our framework is the
trade-off between privacy restrictions and the quality of the
combined model obtained. This trade-off can be controlled
by picking a suitable model resolution, e.g., number of
clusters/classes. Figure 3 shows the variation of the average
log-privacy and quality cost with the number of clusters in the
local models for Euclidean vector datasets. The behavior is
similar for classification settings as well. From the plots, we
note that the average log-privacy as well as the quality costs
decrease as the number of clusters increases. At a thousand
clusters/location (i.e. one cluster per point) there is maximum
loss of privacy, but because of the natural clusters in the data,
comparable cluster quality can be obtained much before this
limiting value, i.e., at a much lesser privacy cost.

3) Quality of Global Model for different data types:
We also applied our learning algorithms to different data
types to illustrate the generality of our approach. For a fair
comparison, we chose the global sample size to be equal
to the combined size of all the data sources and the model
resolution of the local models to be the same as that of the
true model. Figure 4 shows the quality of the different models
for all four data types, in a clustering setting. In all the cases,
the global model performs better than the best local model.
Moreover, the global model quality is in general closer to
the quality of the centralized model than the average quality
of the local models. Similar results were obtained for the
classification settings.

VI. CONCLUSION

We present a privacy preserving framework for inter-
enterprise distributed data mining that is applicable to a wide
variety of data types and learning algorithms, so long as they
can provide a generative model. Our approach is based on
obtaining a global model from “virtual samples’ generated
from the local models using MCMC sampling techniques.
We also propose practical algorithms for distributed clus-
tering and classification based on this approach. Theoretical
results indicate that the algorithms asymptotically converge
to an optimal solution while empirical results show that it
is possible to obtain a high quality global model with a
reasonable sample size and very little loss of privacy. Finally,
we quantify privacy based on ideas from information theory
and provide results that illustrate the trade-off between the
privacy and the global model quality.
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