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ABSTRACT

A novel scheme using spherical manifolds is proposed for the simultaneous classification and pose estimation of 3-D
objects from 2-D images. The spherical manifold imposes a local topological constraint on samples that are close to
each other, while maintaining a global structure. Each node on the spherical manifold also corresponds nicely to a
pose on a viewing sphere with 2 degrees of freedom. The proposed system is applied to aircraft classification and
pose estimation.
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1. INTRODUCTION

The human vision system is inherently two-dimensional (2-D), but is exceptionally adept at recognizing 3-D objects.
This holds true, to a somewhat lesser extent, even in situations where depth and shading information are absent
(e.g. recognizing 3-D objects based on their 2-D silhouettes), indicating that humans make use of implicit 3-D
information. In fact, it has been shown that humans outperform template-based classifiers in recognizing novel
(unseen) 2-D projections of 3-D objects,® when both are trained on the same set of 2-D pose images. Thus it
is within reason to expect a pattern recognizer operating only on 2-D silhouettes, with suitably incorporated 3-D
cues/hints, to perform better then one without hints.

Suppose a 3-D object is only allowed two degrees of freedom for rotation (ignoring rotation about the viewing
axis, i.e. 2-D image plane), corresponding to the elevation and rotation (azimuth) angles, respectively, then each pose
can be characterized by a 3-D vector x on the viewing sphere, where ||x| = 1. Each 2-D pose image can be thought
of as being generated by a camera aimed towards the center of the sphere and travelling along the longitudes and
latitudes. The usual way in which humans learn to recognize a 3-D object, that is, observing it from a number of
distinct angles, can be seen as selecting strategic locations on the spherical viewing surface. Four such locations are
shown in figure 1.

Taking cues from shading, lighting, and most importantly a relatively intricate knowledge of 3-D objects, a few
distinct views usually suffice for humans to “get the whole picture”. On the contrary, a nearest neighbor classifier
not utilizing any high-level 3-D structural information needs to “see” all possible views of the object in order to
recognize it and provide reliable pose estimates. This approach does not make use of 3-D pose information and is
also sensitive to noise and small deviations from the templates.

In this paper, a general pose estimation and classification framework using spherical manifolds that possess none
of the aforementioned limitations, is proposed. Under this framework, a spherical manifold is iteratively fitted to all
2-D pose images of an object, and a smooth nonlinear mapping from image poses to image feature vectors is obtained
for each object. Given a test image feature vector, it is classified as the class of the nearest spherical manifold in
feature space, and its projection onto that manifold gives the pose estimate. Figure 2 shows an example of a spherical
manifold in 3-D feature space.
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Figure 1. (a)-(d): Four sample poses of an object, shown encased within their respective viewing spheres. Poses
are generated by traversing along the latitudes (rotation) and longitudes (elevation) of the sphere. By varying the
elevation angle (Elev) from [—90°,90°], and the rotation angle (Rot) from [0°,360°), all possible unique views of the
object may be generated. Rotations about the 2-D image plane are ignored.
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Figure 2. (a) The spherical manifold in R? latent space. Each node x corresponds to a viewing position. (b) The
spherical manifold in RP feature space for D = 3 (usually D > 3). Each manifold node f (x) in feature space is
related to x in latent space via a generalized linear transformation. Notice how the manifold approximates the data
(y), while maintaining the spherical topology. (c¢) Projection of data points y onto the latent spherical manifold.
The projection of a test point onto the spherical manifold gives its pose estimate.

2. PREVIOUS WORK

One-dimensional (1-D) manifolds embedded in feature space have previously been used for pose estimation and object
classification on simulated military vehicle images,2 achieving better generalization (lower test classification error)
compared to the multi-layer perceptron (MLP) neural network, the nearest neighbor classifier, and the radial basis
function network.> However, that approach was restricted to classifying objects with a single degree of freedom.
Also, the 1-D manifold used is sensitive to noise as it simply interpolates all data points without imposing any
smoothness constraint. Somewhat related is the use of auto-associative MLP neural networks for embedding pose
feature vectors onto a low-D manifold for classification.* Good classification results were reported for simple 3-D
wire-frame objects (using 6 vertices as features), but the system cannot be used for pose estimation due to the
lack of an explicit latent manifold model. An earlier effort on recognizing 3-D objects (but not their poses) from
silhouette sequences using ART2 and aspect graphs, is described in the paper by Seibert and Waxman,® with further
developments given in the paper by Grossberg and Bradski.®

Strong empirical evidence reported by Liu and Kersten! indicates that human object recognition depends on
familiarity with the 2-D pose images of an object. Another key result is that classifiers restricted to rotations in the
image plane of independent 2-D templates could not account for human performance in discriminating novel object
views, implying the need for 3-D information. Image manifolds have also been frequently used in the past for other



applications such as face,” gesture® and handwriting recognition.” Most importantly, it was shown empirically that

image manifolds may have large curvatures,” and therefore linear interpolation between two related 2-D pose images
in pixel feature space may not result in a satisfactory image (as the interpolated image does not lie on the manifold).
Much better results can be obtained if the interpolation is performed along the manifold.®”

3. PROBLEM FORMULATION

Suppose there are C classes of 3-D objects, and each object has N, training pose images. Let y €R” denote the
feature vector corresponding to a pose image and x €R? its associated pose (co-ordinate on the viewing sphere), then
the triplet (y,x,c) represents a pose image of class ¢ with pose x. A spherical manifold ¢ (x) is then fitted to all
pose feature vectors y of a particular class ¢, independent of other classes. The feature vector y is extracted from
each raw pose image by the following process:

1. The pose image is thresholded to yield a binary image.
2. The binary image is normalized for scale and translation invariance.

3. Zernike moments,'® which are rotation invariant, are computed from the normalized image to form a feature
vector.

The extracted feature vector y should be invariant with respect to image scale, translation and rotation. Rotation
invariance is especially important in this context because it corresponds to removing the third degree of freedom from
the viewing sphere, i.e. at each position on the viewing sphere, the hypothetical camera is allowed to rotate about
its image plane without affecting the extracted feature vector y. Scale invariance is somewhat tricky for aircraft
images, and is described in detail next.

3.1. Image Pre-processing

The zero-th order geometric moment,'! i.e. pixel area for a binary image, is commonly used to scale image objects to
a uniform size, so as to achieve scale and translation invariance. However, this measure is not appropriate for images
that vary significantly in shape skew, as in the case of aircraft poses. For example, the top-down view of the aircraft
in figure 3(a) occupies significantly more screen real-estate compared to its frontal view in figure 3(e). If the zero-th
order geometric moment (area) is used for scaling here, one of the following two results may occur: (1) a small-area
object is magnified beyond the image boundaries and gets clipped, as shown in figure 3(f), or, (2) important details
are lost from reducing a object too much, as exemplified in figure 3(c). Moreover, all available training pose images
will have to be evaluated in order to select a suitable moment threshold, which may be problematic for unseen test
pose images. In general, the situation gets worst with an increasing number of highly skewed aircraft pose images.
Therefore for the pose estimation problem, it is better to achieve scale and translation invariance with respect to a
fixed-size bounding shape. The proposed scheme is described as follows:

1. Compute the geometric centroid of object (unscaled image).
2. Perimeter-bound the object with the smallest bounding disc bshape, centered at the image centroid.

3. Scale the bounding bshape to the desired size/resolution (e.g. 128 x 128) via linear interpolation, thereby scaling
the object contained within.

4. Create a new rectangular image out of the bounding box of the scaled bshape, in this case the centroid of the
object will correspond to the center of the image.

Translation invariance is obtained by centering the bounding shape bshape at the object’s centroid. Scale in-
variance is achieved via scaling the bshape to a constant resolution, say 128 x 128. The requirement that both the
object centroid and bshape corresponds to the image center facilitates radial feature extraction; feature extraction
algorithms such as Zernike moments consider only the portion of image lying within the unit circle. Figure 3 illus-
trates the advantages of this method compared to the geometric moment based normalization method on two typical
aircraft poses.
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Figure 3. (a)(e) Original images, (b)(f) scaled to 2000 pixels, (c)(g) scaled to 500 pixels (d)(h) scaled via bounding
disc method. Notice the clipping in (f), and the lost of details in (c). This example illustrates the difficulties
encountered when pose images are made scale-invariant through the classical zeroth-order moment normalization
method (constant pixel count). The situation gets worse when more pose images are taken into consideration. On
the contrary, the bounding disc scaling method ensures a minimal loss of details, while maintaining translation and
scale invariance (rotation invariance is also facilitated by making the centroid of the scaled object corresponds to the
image center, as marked by the crosses in (d) and (h)).

3.2. Zernike Moments

After pre-processing, Zernike moments'? are extracted from each image to form the feature vector y. Zernike
moments are the projection of the image function onto an orthogonal set of complex polynomials over the interior
of the unit circle. It has been shown to be superior to other types of moment invariants for pattern classification
tasks.!2 The Zernike moment of order a with repetition b for a discrete image function I (c1, co) is approximated as

a+1 .
Zab = ZZI(QW?)V@(P:@), A +ea<l

™

C1 C2
where the complex polynomial V,; is given in polar co-ordinates as
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Order (non-negative integer)
Repetition (integer, subject to constraints (a — |b|) is even and |a| < b)

Length of vector from image center to pixel co-ordinate (c1,c¢2)
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Angle between vector p and the horizontal axis.

The Zernike moments’ magnitudes are invariant to image rotation, and thus can be used as rotation-invariant features.
In fact, the Zernike moment Z/, of a rotated (by 6 radians) image is simply related to that (Z.) of the unrotated



image by a phase change proportional to the degree of rotation, i.e.
Zop = Zape . (1)

This property is very useful for pose compensation, described later. Note that since Z, 5 = 7, only moments
for b > 0 need to be considered. In addition, the first Zernike moment Zgg represents the pixel mass/count, which
varies with poses (with respect to the scaling scheme used in this paper), and therefore is useful. The second Zernike
moment Zi1 is almost zero as it is proportional to the horizontal and vertical first-order geometric moments, which
are both zero due to translation normalization, and are therefore not used. In this paper, up to 49 (absolute) moments
are used.

4. SPHERICAL MANIFOLDS

The spherical manifold is comprised of M nodes {xm}]\m/":l evenly distributed on the surface of a sphere as shown in
figure 2(a). The next section briefly describes the probabilistic principal surface model which is used to construct
the spherical manifold.

4.1. Probabilistic Principal Surfaces
Principal surfaces (curves)!? are nonlinear generalizations of principal subspaces (components) that formalizes the
notion of a low-D manifold passing through the ‘middle’ of a dataset in high-D space. The probabilistic principal
surface (PPS),'* a generalization of the generative topographic mapping,'>'¢ is a parametric approximation of
principal surfaces. The PPS manifold is comprised of M nodes {xm}%:l arranged typically on a uniform topological
grid in latent (low-D) space R®. The topology is consistently enforced via a generalized linear mapping from each
latent node x,,, in R¥ to it’s corresponding data node f (x,,) in data (high-D) space R” (D is the data dimensionality),

£ () = Wb (x,0)

where W is a D x L real matrix and

d)(xm):[d)l(XM) e pp (Xm) ]T7

is the vector containing L latent basis functions ¢; (x) : R® — R, [ = 1,...,L. The basis functions ¢, (x) are
usually isotropic Gaussians with constant widths. Each data node f(x,,) actually corresponds to the mean of a
Gaussian probability distribution with noise covariance parameter 3 (a,x,,) where a (0 < a < D/Q) denotes the
amount of clamping in the tangential manifold direction. Note that the GTM is obtained for & = 1, and « < 1 has
been shown to yield a better manifold in terms of reconstruction error.'* The PPS is iteratively computed using
a maximum likelihood optimization procedure. Figure 4 shows a 1-D PPS. Clearly, the spherical manifold can be
trivially constructed using a PPS with latent nodes {xm}M , arranged regularly on the surface of a sphere in R3.

4.2. Initialization

In order to achieve a one-to-one mapping between each pose image and manifold node, the number of nodes M is
set equal to the number of samples, and the spherical manifold is initialized such that W approximately maps each
latent node at position x to a pose image of pose x. This can be done by solving for W in the least squares equation

[y1 - yu |=W[ o) - o(xum) ]

where the pose of image feature vector y,, is x,, form=1,..., M.

4.3. Classification and Pose Estimation

Given a test image feature vector y, it is first projected onto all C' manifolds {f c}cczl, and is assigned the class label
of the nearest manifold. The co-ordinate of its projection onto that manifold gives a first-cut pose estimate x,. The
projection can be performed probabilistically,' or simply using a nearest neighbor approach. In experiments, it has
been found that probabilistic projections give better pose estimates. Note that due to the use of rotation invariant
features, a rotational displacement may exist between the images corresponding to y and f (x,). In this case, the
phase difference between the complex versions of y and f (x,,) may be used to compensate for the rotation according
to equation 1. Thus, although only the magnitudes of Zernike moments are used for classification and manifold
construction, their original complex versions must also be stored and made available if pose compensation is desired.
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Figure 4. A 1-D PPS in R? with 5 nodes and 4 latent bases.

5. EXPERIMENTS
5.1. LANS Aircraft Dataset

In practice it is difficult to obtain all possible pose images for any arbitrary aircraft, unless a computer 3-D model
of the aircraft is available. Therefore in this paper, computer 3-D models were used to generate the training pose
images of 10 aircrafts. A total of 684 pose images at 128 x 128 pixel resolution were generated/rendered for each
aircraft such that the training poses range from

. ele = {7907 7807 e 7807 90}
(elev,rOt) - { rot = {07 107 e 7350}

Note that only one training pose image is needed at the north and south poles (elev = —90,90); since rotation at
the poles is equivalent to rotation about the image plane, and the feature extraction method used here is rotation
invariant. Similarly, another 648 pose images corresponding to poses

. ele = {7857 775, te 775’ 85}
(ele/UJ TOt) N { rot = {07 107 e 7350}

were generated for testing purposes.

A 614-node spherical manifold with 83 latent bases (including bias) was computed for each aircraft using 29
Zernike moments and a clamping factor a = 1. Tables 1 and 2 show the confusion matrix for the training and
test set, respectively. Some interesting characteristics can be inferred from the test result by cross-referencing to
the corresponding pictures in figure 5. First, the similarity between class 2 (b707) and 3 (b747) is symmetrical, as
both are Boeing jets. Likewise, class 4 (cessnad(2) and 5 (dc3), which are both propeller driven, have a certain
degree of symmetrical overlap. Last, class 7 (f15) is sometimes misclassified as class 8 (f18) and 10 (mig29m), which
again is expected since all three aircrafts looked very alike (twin vertical rear wing stabilizers, twin undermounted
jet engines). Moreoever, class 8 (f18), with its more compact fuselage, has a relatively high classification accuracy.
On the other hand, class 10 (mig29m) is frequently mistaken for class 7 (f15), as both have wider bodies compared
to class 8 (f18). It should be noted that the high classification rate obtained for class 7,8 and 10 is quite remarkable,
considering the high degree of similarity between the three types of aircrafts and that only image silhouettes were
used.

Table 3 shows the effect of using a larger number of Zernike moments and different clamping values («) on the
test classification rate and pose estimation accuracy. It can be seen that using a larger D (more Zernike moments)
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Figure 5. (a)—(j) The 10 computer rendered 3-D models used to generate the image poses. The models are shown
at —40° elevation and 40° rotation. A total of 614 pose images are generated for each aircraft.

(i) learjet (j) mig29m

True\Classified | 1 2 3 4 5 6 7 8 9 10

1 blbomber 676 3 1 1 3

2 b707 1 663 11 8 1

3 b747 11 663 4 ) 1 1

4 cessna402 ) 674 2 1 1

5 dc3 2 1 2 3 671 3 1 3

6 f117 1 1 677 1 3

7 f15 1 1 678 3

8 f18 1 1 4 678

9 learjet 3 3 1 1 3 1 1 670 1

10 mig29m 1 1 1 6 2 673
Training Classification Error = 1.7 % (117 errors)

Table 1. Training Classification Confusion Matrix.

resulted in noticeably lower test classification error, but only yielded marginal improvements in pose estimation
accuracy. Setting a = 0.75 also improved slightly both the classification and pose estimation accuracy. Thus it
can be concluded that oo = 1 gives reasonable performance with the least computational complexity (setting « # 1
requires extra computational effort).

Figure 6 plots the percentage of training and test samples with poses estimated within a given accuracy. The
error (in degrees) is measured as the angle between the true pose vector and that of the estimated pose vector on
the viewing sphere. From the figure, it can be seen that approximately 55% of the test samples can be estimated
within 20° accuracy, whereas almost 70% of the samples can be accurately estimated within 40° accuracy. This
is satisfactory considering the fact that the classifier was trained at 10° resolution, and that it uses only rotation
invariant features extracted from object silhouettes. The average elevation estimation error is less than 20° whereas
the average rotation estimation error is around 100°. Thus, most of the pose estimation errors occurred in the
rotation angle, and can be attributed to the use of rotation invariant features. The compensation method mentioned
previously may be used to obtain further improvement in rotation angle estimation accuracy. It should be noted
that simple compensation is only possible for large elevation values, i.e. ele ~ 90°.



True\Classified | 1 2 3 4 5 6 7 8 9 10
1 blbomber 616 3 2 6 6 6 3 6
2 b707 583 34 5 10 3 1 1 4 7
3 b747 46 574 10 4 5 2 1 5 1
4 cessna402 13 5 562 31 3 5 15 8 6
5 dc3 11 6 30 381 4 2 6 8
6 f117 13 2 4 4 605 6 2 3 9
7 f15 ) 1 1 2 8§ 571 28 4 28
8 f18 5 2 1 2 2 15 611 10
9 learjet 1 9 6 4 11 11 7 5 588 6
10 mig29m 10 1 3 1 8 31 11 1 582
Test Classification Error = 9.4 % (607 errors)

Table 2. Test Classification Confusion Matrix.

Classification | Percentage (%) of pose estimates within given accuracy

D| « Error (%) <10° [ <15° | <20° | <25° [ <30° | <35° | <40°
291 0.5 9.69 32 48 55 60 63 66 68
0.75 9.18 34 49 56 61 64 67 69
1 9.37 33 49 56 60 63 66 68
39| 0.5 6.85 34 50 57 61 65 67 69
0.75 7.20 34 50 57 61 65 67 69
1 7.08 34 50 57 61 64 66 69
491 1 5.93 36 51 57 62 65 67 70

Table 3. Test performance for different number of features (D) and clamping parameter values ().

5.2. Real Aircraft Dataset

To evaluate how well the system performs on real-life data, a selection of images corresponding to the studied
aircrafts were downloaded from the internet and fed into the trained classifier as inputs. Each image is segmented
semi-automatically (using a combination of edge-detection, thresholding and other image processing techniques with
human supervision) and normalized according to the scheme in section 3.1. Although the exact pose of each test
image is unknown, the pose-estimate given by the spherical manifold classifier can be used to generate a pose-image
from the 3-D model, which is then visually compared to the test image. Figures 7-13 show the classified images with
their corresponding re-generated 3-D pose images.

6. CONCLUSION

A novel system using spherical manifolds for 3-D object classification and pose estimation from 2-D images is proposed
and applied to the task of aircraft classification. The system was shown to generalize well on both unseen artificial
and real images when trained only on a set of computer generated 2-D object silhouettes. Despite the existence of
ambiguity pose images, the system was able to differentiate between very similar looking aircrafts (the sets: {fl14,
f18, mig29}, {b707, b747}, {cessnad02, dc3}) most of the time. It was also capable of giving reliable pose estimates
(within 40° accuracy) for almost 70% of the data, or within 20° for over 50% of the data, even when rotation invariant
features were used. With pose compensation, the pose estimation accuracy can be improved further.

It is possible to perform image interpolation under the developed framework, either using Zernike moments or
other invertible feature extraction methods such as wavelet transforms. If Zernike moments are used for this purposes,
the amount of data storage requirement becomes quite significant as the same number of image basis as the number
of features must be stored. More work is currently being done on coming up with a reliable compensation method, in
addition to investigating other types of feature extraction schemes, and testing the system on more real photographs.
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Figure 6. Plot of fraction of poses estimated within given accuracy.
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Figure 7. (a) input image, (b) normalized image, (c) image/pose from classifier output, (d) 3-D rendered image
based on classifier output. This is a good example of the ambiguity caused by using image silhouettes; the silhouettes
in (b) and (c) look alike, but actually correspond to planes pointing in opposite directions. The misclassification of
(a) into a b747 is acceptable in this case, since it is difficult even for humans to make the distinction solely based on
the information in (b).

(a) b707.4 (b) Segmented (c) Output (d) b747 Ele: 30 Rot: 45

Figure 8. (a) input image, (b) normalized image, (c) image/pose from classifier output, (d) 3-D rendered image
based on classifier output. This is another example highlighting the ambiguity of image silhouettes. The images in
(b) and (c) are approximately related by an image rotation. Again, the classifier “thinks” that the image in (b) is a
b747 instead of a b707.

(a) b747.1 (b) Segmented (c) Output (d) b747 Ele: 10 Rot:107
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Figure 9. (a) input image, (b) normalized image, (c¢) image/pose from classifier output, (d) 3-D rendered image
based on classifier output.
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Figure 10. (a) input image, (b) normalized image, (c) image/pose from classifier output, (d) 3-D rendered image
based on classifier output.

(@) b747.4 (b) Segmented (c) Output (d) b747 Ele: 40 Rot:113

Figure 11. (a) input image, (b) normalized image, (c) image/pose from classifier output, (d) 3-D rendered image
based on classifier output. The classifier output is near perfect, except for an image rotation (caused by using
rotation-invariant features).

(a) f117.3 (b) Segmented (c) Output (d) f117 Ele: 50 Rot:281

Figure 12. (a) input image, (b) normalized image, (c) image/pose from classifier output, (d) 3-D rendered image
based on classifier output.
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Figure 13. (a) input image, (b) normalized image, (c) image/pose from classifier output, (d) 3-D rendered image
based on classifier output. Note that the test image in (a) represents a newer generation of the learjet, yet the system
was able to classify and estimate its pose correctly.
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