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Best-Bases Feature Extraction Algorithms for
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Abstract—Due to advances in sensor technology, it is now
possible to acquire hyperspectral data simultaneously in hundreds
of bands. Algorithms that both reduce the dimensionality of the
data sets and handle highly correlated bands are required to
exploit the information in these data sets effectively. We propose
a set of best-bases feature extraction algorithms that are simple,
fast, and highly effective for classification of hyperspectral data.
These techniques intelligently combine subsets of adjacent bands
into a smaller number of features. Both top-down and bottom-up
algorithms are proposed. The top-down algorithm recursively
partitions the bands into two (not necessarily equal) sets of bands
and then replaces each final set of bands by its mean value. The
bottom-up algorithm builds an agglomerative tree by merging
highly correlated adjacent bands and projecting them onto their
Fisher direction, yielding high discrimination among classes.
Both these algorithms are used in a pairwise classifier framework
where the original -class problem is divided into a set of

2

two-class problems.
The new algorithms 1) find variable length bases localized in

wavelength, 2) favor grouping highly correlated adjacent bands
that, when merged either by taking their mean or Fisher linear
projection, yield maximum discrimination, and 3) seek orthogonal
bases for each of the

2
two-class problems into which a -class

problem can be decomposed. Experiments on an AVIRIS data set
for a 12-class problem show significant improvements in classifi-
cation accuracies while using a much smaller number of features.
Moreover, the proposed methodology facilitates the extraction of
valuable domain knowledge regarding the importance of certain
bands for discriminating specific groups of classes.

I. INTRODUCTION

D ISCRIMINATION among different landcover types
using remotely sensed data is an important application

of pattern classification. Advances in sensor technology have
made possible the simultaneous acquisition of hyperspectral
data in more than two hundred individual bands, where each
spectral band covers a fixed range of wavelengths. Although
hyperspectral data are becoming more widely available, al-
gorithms that exploit the potential of the narrow bands while
being computationally tractable, are needed. The response
from each pixel in the hyperspectral image can be represented
by a -dimensionalordered vectoror “signal” that is
characterized by highly correlated spectrally adjacent bands.
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A feature extractor for hyperspectral data should utilize these
properties while obtaining “signatures” for discriminating
among different landcover types or classes. Feature selection
methods based on Bhattacharya distance [1] and feature extrac-
tion methods based on Karhunen–Loéve (K–L) transforms [2]
have been proposed to reduce the number of features used in
classification. However, while feature selection methods ignore
the fact that adjacent bands are generally correlated, feature
extraction methods do not utilize the ordering information
between adjacent bands at all. Moreover, only one set of
features is typically used for labeling all the classes. While
selection of a single “global” set of features leads to inefficient
utilization of information from multispectral data, it is even
more problematic in hyperspectral data analysis as it defeats
the primary motivation for acquiring hyperspectral data: to
characterize the unique class specific responses of individual
land cover types.

A new algorithm has been developed that extracts class-spe-
cific features for classification. First, a -class problem is
decomposed into two-class problems. For each pair of
classes, features are extracted independently, and a Bayesian
classifier is learned on this feature space. The results of all the

classifiers are then combined to determine the class label of
a pixel. This paper focuses on the feature extraction component
of the algorithm for two-class problems. These techniques
involve merging adjacent subsets of bands to yield a small
number of highly discriminatory features. Two algorithms for
finding such feature spaces are proposed: 1) a fast, greedy
top-down approach that recursively partitions a set of adjacent
bands into two sets and merges each final group of bands into
its mean [3], and 2) a bottom-up agglomerative clustering
approach that merges adjacent highly correlated bands by
projecting them onto their Fisher direction that maximizes the
separation between two classes [4].

The paper is organized as follows. In Section II, the character-
istics of hyperspectral data are reviewed, and the pairwise clas-
sifier framework is presented. The new top-down and bottom-up
algorithms are described in Sections III and IV, respectively. Ex-
perimental results highlighting the efficacy of the best-bases al-
gorithms in improving classification accuracy, reducing the fea-
ture space, and extracting domain knowledge are presented in
Section V.

II. BACKGROUND

Hyperspectral sensors simultaneously acquire information in
hundreds of spectral bands. A hyperspectral image is essen-
tially a three-dimensional (3-D) array , where
denotes a pixel location in the image, anddenotes a spectral
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Fig. 1. Correlation matrix of AVIRIS data set: Adjacent bands typically exhibit
higher correlation (white).

band (wavelength). The value stored at is the response
(reflectance or emittance) from the pixel at a wavelength
corresponding to spectral band. The input space for a hyper-
spectral data (classification problem) is an ordered vector of real
numbers of length , the number of spectral bands, where bands
that are spectrally “near” each other tend to be highly correlated
(see Fig. 1). The goal of a feature extraction algorithm for hyper-
spectral classification is to obtain mappings of the information
from the original set of bands that characterize the spectral sig-
natures of the classes that are being discriminated.

A. Related Work in Feature Extraction for Hyperspectral Data

Analysis of hundreds of simultaneous channels of data ne-
cessitates the use of either feature selection or extraction algo-
rithms prior to classification. Feature selection algorithms for
hyperspectral classification are costly, while feature extraction
methods based on K–L transforms, Fisher’s discriminant, or
Bhattacharya distance cannot be used directly in the input space
because the covariance matrices required by all these methods
are highly unreliable given the ratio of the amount of training
data to the number of input dimensions.

Lee and Landgrebe [1] proposed methods forfeature extrac-
tion based on decision boundariesfor both Bayesian and neural
network based classifiers. The data is projected normally to the
decision boundary found by learning a classifier in the input
space itself. Jia and Richards [2]–[5] proposed a feature extrac-
tion technique based on the segmented principal components
transformation (SPCT) for two-class problems involving hyper-
spectral data. The K–L transform is applied to each group of ad-
jacent highly correlated bands, and a subset of principal compo-
nents from each group is selected based on their discrimination
capacity. Recently, Jimenez and Landgrebe [6] proposed a fea-
ture reduction algorithm for hyperspectral data based on projec-
tion pursuit [7]. Using Bhattacharya distance as the projection
index, a linear transformation of the input space is sought. The

projection matrix is constrained to partition all the bands into
smaller groups of adjacent bands and project each group into a
single feature.

B. Desired Properties of a Hyperspectral Feature Extractor

The three main properties of the desired feature extraction
algorithm identified in [3] are as follows.

1) Class dependence:Different subsets of classes are best
distinguished by different feature sets. Hence, feature ex-
tractors for specific groups of classes should be deter-
mined separately. Most classifiers seek only one set of
features that distinguishes among all the classes simulta-
neously. This not only increases the complexity of the po-
tential decision boundary, but also requires a large number
of features and reduces the interpretability of the resulting
features.

2) Ordering constraint:The characteristics that bands are
ordered and adjacent bands are correlated should be ex-
ploited by the feature extraction algorithm. A Fisher or
K–L transform on all the bands does not treat the input
vector as a signal and hence is not ideal for hyperspectral
data feature extraction. Both the SPCT based feature ex-
tractor [2] and the projection pursuit based algorithm [6]
utilize the ordering and locality properties of hyperspec-
tral data. In general, any transformation should involve
adjacent groups of bands.

3) Discriminating transforms:The transformations should
try to maximize discrimination among classes, and thus
use class label information. The K–L transform, used in
SPCT, for example, is suited for preserving the variance
in the data, but does not necessarily increase the discrim-
inatory capacity of the feature space. Use of Fisher dis-
criminant or Bhattacharya distance (as used in decision
boundary feature extractors) is therefore more desirable
for feature extraction.

In order to satisfy Property 1, a pairwise classifier with a class
pair specific feature extractor is used. This pairwise classifier
architecture is described in the following section.

C. The Pairwise Classification Framework

The conventional approach to classification problems
is to first transform an input space(which is the hyperspec-
tral signal here) to a feature spacein which the discrimination
among all the classes in class set is high then to use a single
classifier that distinguishes all the classes simultaneously.
In this paper, however, we use a Bayesian pairwise classifier
(BPC) framework [8], [9] that we developed previously for clas-
sification problems with a moderately large number of classes.
In the BPC framework shown in Fig. 2, a-class problem is
first decomposed into a set of two-class problems for all
pairs . Each of the two-class problems
is solved independently, and their results are combined to obtain
the result for the original -class problem.

A customized feature extraction approach for each pair of
classes is especially advantageous in remote sensing applica-
tions, where extraction of domain knowledge about specific
class characteristic, is as important as reducing the feature
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Fig. 2. Pairwise classifier architecture: pairwise classifiers with respective
feature selectors.

space and improving classification accuracy [8], [9]. For
classification of hyperspectral data, this framework is partic-
ularly advantageous as one can essentially “create” artificial
hyperspectral sensors for discriminating each pair of classes
from the original.

Each classifier in the BPC architecture has an associ-
ated feature extractor denoted by that trans-
forms an input into a feature vector spe-
cific to class pair . The output of is an estimate of
the posterior probability (and

). Each is implemented as a maximum
aposterior Bayesian classifier that models the probability den-
sity functions , as:1

(1)

where
;

dimensionality of the feature space ;
mean of class in the feature space .

(2)

where is the set of training examples in class. The corre-
sponding covariance is given by

(3)

1Alternatively, a mixture of Gaussian can be used as required.

Using Bayes rule

(4)

where are the estimated class priors based on the
training data

(5)

These estimates are used in cases where the class distribution
of the training data can be used to estimate the class priors.
However, in the landcover classification problem, the class prior
often cannot be estimated reliably from the class distributions of
the training data and hence, equal priors were assumed.

The outputs of the classifiers can be combined (see
Fig. 2) to obtain the final output either by simple voting [10]
or by applying the MAP to estimates of the overall posterior
probabilities obtained from the outputs of the pairwise classi-
fiers [11]. In the voting combination scheme, a count
of the number of classifiers that labeled as class

(6)

is used. Here is the indicator function, which is 1 when
the argument is true and 0 otherwise. The inputis as-
signed the class label for which the count is maximum, i.e.,

.
In another recently proposed approach to combining pair-

wise classifiers [11], the overall posterior probabilities
are estimated for some from the

probabilities as follows. Denote ,
, and . The goal is to find an

estimate of true posteriors such that is close
to , . Since there are independent parameters
but equations, it is not possible in general to estimateso
that . Hence, only an approximate solution is
sought. The objective for estimating is to
minimize the weighted K–L distance between and

(7)

This results in the following algorithm.

1) Initialize and evaluate corresponding .
2) Repeat the following updates for

until convergence

(8)

(9)

(10)
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Fig. 3. (a) Example of a wavelet expansion of a 16-dimensional (16-D) signal into a full binary tree and a result of the LDB best-bases selection (dark blocks).
The LDB best-bases algorithm always partitions the signal into two equal parts. (b) Example of a more general bases that cannot be obtained by such an LDB
approach.

The input for which , are estimated, is as-
signed class . While voting is simple
and fast, the MAP approach produced slightly better results in
the experiments reported in Section V.

D. Local Discriminant Bases (lDB)

Hyperspectral data are ordered in D-dimensional “signal”
vectors. Coifman and Wickerhauser [12] developed a best-bases
algorithm that first expands a signal into wavelet packet bases
and then performs a bottom-up search for the bases that pro-
duce maximum compression. Saito and Coifman [13] extended
this best-bases algorithm for classification and introduced the
notion of local discriminant bases (LDB) for classification of
signals and images.

The LDB algorithm first expands a given signal into a library
of orthonormal bases, i.e., a redundant set of wavelet packet
bases having a binary tree structure, where the nodes of the
tree represent the subspaces with different time-frequency lo-
calization characteristics. Complete bases, called the best-bases,
which minimize a certain information cost function such as en-
tropy (for compression) or that maximize certain discrimination
information function such as cross-entropy (for classification, as
in LDB) [13], is sought in this binary tree using a divide-and-
conquer algorithm. In this paper, Bhattacharya distance is used
to evaluate each basis. The shaded regions of the tree in Fig. 3(a)
illustrate an example of such a bases. The 16-length signal is
partitioned into two eight-length segments, each of which is fur-
ther partitioned into two four-length segments and so on. The
LDB algorithm starts at the bottom and considers the relative
goodness of the two-dimensional (2-D) space comprised of first
two elements of the signal and the one-dimensional (1-D) space
formed by merging these two elements. In this case, it finds that
the 2-D finer resolution space has better discrimination and re-
tains the (the first two shaded blocks at finest resolution). Next,
the LDB considers the third and fourth elements and decides
that merging them is better, and hence the first shaded block at
the second resolution. The process continues, resulting in the
kind of bases shown in Fig. 3(a). The signal is partitioned only
into two equal parts at each resolution.

LDB cannot be applied directly for feature extraction for hy-
perspectral data, for the following reasons.

• Fixed length subspaces:Once a mother wavelet is fixed,
the binary tree formed by the recursive expansion of the

signal into a library of orthonormal bases is also fixed. As a
result, bases other than the ones shown in Fig. 3(a) cannot
be obtained. Fig. 3(b) shows an example of one such tree
and a choice of bases that cannot be obtained from the
LDB algorithm.

• Requires full expansion: The original best-bases al-
gorithm of Coifman and Wickerhauser [12] requires
that the signal be first decomposed completely into
the finest bases possible before the second stage of
finding the best-bases can be initiated. For a signal of
length , the complete expansion has the time
complexity of . The complete expansion is
necessary because the best-bases selection algorithm is
bottom-up. As shown in the experiments, for classifi-
cation problems, the actual number of features that is
eventually selected is far less than. That is, the tree is
normally pruned near the root node and hence, a top-down
approach would be more efficient.

• No class dependence:The LDB algorithm tries to find a
set of best-bases for all the classes by trying to maxi-
mize the overall discriminant function obtained by adding
all the pairwise functions for all class pairs. As remarked
in [13], for a large number of classes, it is not guaranteed
that such a discrimination function yields the optimal set
of bases for discriminating all classes simultaneously.

In the following sections, it will be shown that both the pro-
posed algorithms, in conjunction with the pairwise architecture
of Section II-C, are able to avoid all three problems.

III. T OP-DOWN GENERALIZED LOCAL DISCRIMINANT BASES

Generalizing the LDB, the new top-down procedure builds
the tree recursively partitioning the bands into two possibly
unequal length subsets or groups of bands. The fast, greedy al-
gorithm, hereafter referred to as TD-GLDB, is different from
the LDB algorithm in three ways. First, there is no predefined
mother wavelet to fix the subspaces. A subspace of any number
of adjacent bands is allowed so that partitions like the one shown
in Fig. 3(b) are possible. Second, although the algorithm gen-
erates a binary tree, it does so in a top-down fashion, so the
worst-case time complexity is only , where is the
depth of the tree. Finally, a customized set of features is obtained
for each pair of classes. The proposed TD-GLDB algorithm has
the following three stages:
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1) Recursive partitioning of adjacent bands into
nonoverlapping groups (subspaces):All the bands
in the hyperspectral data set are recursively partitioned
into a number of groups of adjacent bands as shown in
Fig. 3(b). Each group is denoted by an interval
comprised of all the bands between and including bands

through .
2) Merging bands within each group: Bands within

each group are linearly combined to give single
“group-bands”. A user definedmerge functionde-
noted by is used to merge bands in the group

. Herein, for simplicity, the mean of all the bands
within a group is used as the merge function

(11)

In general, any linear combination such as a Fisher dis-
criminant projection could be used as the merge function.

3) Selection of group-bands:A number of group-bands is
obtained as a result of Steps 1 and 2. The subset that pro-
vides the best discrimination between classesand is
selected using a forward feature selection algorithm [14]
in which features are added from the available set until
the increase in discrimination is not significant.

A. Class Discrimination Functions

Let denote a measure of dis-
crimination between classesand along the group-band
obtained by merging bandsthrough using a merge function

. Choices for are members of two broad categories.

1) Classification performance on training/validation
data: Using a training or validation set, the classification
accuracy of the two-class problem can be measured in the

1-D space assuming a maximum likelihood (ML)
classifier in the 1-D space. This could also be used as a
measure of discriminating capacity for group-band.

2) Differences in class probability density functions
(pdfs): If the pdfs and are estimated
from the data sets and , then the discrimination
between classes and can be evaluated in terms of
some difference measure between the two pdfs (e.g., the
Kullback-Leibler divergence [15], Bhattacharya distance
[16], etc.) In this paper, we use a discriminant measure
based on the log-odds of (pairwise) class posterior
probabilities [8], [9]

(12)

where is the (estimated) pairwise class
posterior probability of projected on the basis for
class and . This
log-odds ratio gave better performance than Bhattacharya
distance and K–L divergence in our experiments. This is

just an empirical observation and may not be true for all
datasets.

B. Recursive Decomposition Algorithm

Once the merge function and the discrimination function
are selected, the following top-down recursive algorithm par-

titions the original D-dimensional space into smaller subspaces.
Decompose

1) For each compute and
and find the best partition of the subspace

(13)

2) If and
• Decompose .

3 If and , then
• Decompose .

The condition in Steps 2 and 3 in this Decompose routine
ensure that a subspace that does not show any improvement in
its discrimination capacity from its parent node is not partitioned
any further. This heuristic pruning mechanism is based on the
following assumption.

Assumption I: If the discrimination for
some , then for any subspace

of i.e., ,
.

Although we do not prove this theoretically, it was found to
be true in all our experiments for both discrimination functions
described in Section III-A. Using assumption I, steps 2 and 3
in the Decompose routine essentially imply that if a child node
does not have a higher discrimination than the parent node, the
child node need not be expanded further. This pruning mech-
anism leads to an efficient top-down search for a set of bands
with high discrimination.

IV. BOTTOM-UP GENERALIZED LOCAL DISCRIMINANT BASES

A bottom-up algorithm (referred to as GLDB-BU [4]) that
generalizes the LDB algorithm was also developed. Here, the
search for the best-bases is conducted for each pair of classes
separately, as opposed to the LDB where only one set of bases
is extracted for distinguishing all classes simultaneously. It also
allows the flexibility of merging any set of adjacent bands as
opposed to merging bands obtained by recursively partitioning
the set of bands into two equal groups in each level of the tree,
as in LDB. Finally, the criteria used to measure the goodness
of a group of bands uses both the correlation between those
bands and the discrimination between the two classes when
these bands are projected in the Fisher direction. The Fisher pro-
jections of a localized set of highly correlated bands yield the set
of bases for a given pair of classes.

A. Criteria for Evaluating a Basis

In Section II-B, three properties of a hyperspectral feature ex-
tractor were identified. The pairwise classifier incorporates the
first of those properties, i.e., class dependence, by extracting
features independently for each class pair. The second and third
properties are incorporated by adequately defining the criteria
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for evaluating a basis. One such criteria is proposed in this sec-
tion.

The second property requires that the high correlation values
between spectrally adjacent hyperspectral bands be utilized.
Thus, the criteria should reward combining highly correlated
bands rather than combining less correlated bands. There are
a number of ways of defining the correlation among a group
of bands in terms of the correlation between all pairs of bands
given by a correlation matrix (e.g., Fig. 1)

(14)

where is the covariance matrix

(15)

and is the mean over the two classes

(16)

The criteria used to quantify the correlation among the bands
for any group of bands is defined
by the correlation measure as theminimumof all the
correlations between every pair of bands in the range

(17)

The group of bands is highly correlated if is large.
The third property in Section II-B requires that the basis be

discriminating. Thus, the criteria should reward a highly dis-
criminating basis more than a less discriminating basis. Dis-
crimination between the two classes can be quantified as the
Fisher discriminant in the 1-D Fisher projection obtained from
the subspace . Let and be the subvectors con-
taining dimensions through of the mean vectors and
corresponding to the classesand . Let and be the
submatrices containing rows and columnsthrough of the
class covariance matrices and of these classes, then the
within class covariance for the two-class problem is given
by

(18)

where is the prior probability of class . The between
class covariance is given by

(19)

We define the discrimination measure for grouping
these bands as the Fisher discriminant of the subspace induced
by bands through . Since we are considering only a two-class
problem, the Fisher discriminant projects this subspace into
a 1-D space through a Fisher projection vector that
maximizes

(20)

yielding the projection vector

(21)

The product of the correlation
measure and the discrimination measure is used as the measure
of goodness of the “group-band” . The corresponding
basis is given by the Fisher projection vector . A bottom-up
search algorithm, described next, is used for finding the best
set of bases for each class pair using this criteria.

B. Bottom-Up Search for the Best-bases

In the bottom-up search algorithm, let
denote the set of actual bands that belong to theth “group-
band” and denote the number of such group-bands at level

.

1) Initialize (finest level), ,
. .

2) Find the best pair of bands to merge
• for .

— Form a group-band by merging group-bands
and

(22)

— Evaluate the group-band
.

• Find the position of the best pair of bands at this
level

(23)

3) If then
continue; otherwise stop.

4) Update bands at the next level
• If then , i.e.,

, .
• , i.e.,

.
• If then ,

i.e., ,
.

5) Move to the next level: , .
Return to Step 2.

The process of merging adjacent bands continues until a level
(i.e., ), at which merging any two adjacent group-bands yields
a worse (in terms of ) group-band than either of the two group-
bands being merged (Step 3). Each of the group-bands

obtained as a result of this process is associated

with the corresponding Fisher projection vector

that forms the bases of projection being sought. All the se-
lected bases are mutually orthogonal as the group-bands do not
overlap. Instead of using all the bases, a forward feature
selection algorithm is applied to the resulting set of bases to se-
lect a subset such that adding any more bases will not lead to a
significant increase (i.e., user-specified 1%) in the classification
accuracy of the training set. Let denote the final
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Fig. 4. Hyperspectral data: The AVIRIS Hyperspectral data obtained
by NASA over Kennedy Space Center, FL. The bands corresponding to
wavelengths of 1999 nm, 953 nm, and 527 nm were used for RGB channels for
displaying purpose.

matrix containing the orthogonal bases after the feature selec-
tion process for distinguishing class pair .

C. A Bayesian Classifier for GLDB-BU

The classifier for class-pair utilizes: 1) the bases vec-
tors found by the algorithm presented in Section IV-B, 2)
the K-dimensional means and in the projected
space, and 3) the covariance matrices and

. In terms of the pairwise classifier architecture, for
any novel input , the feature extractor transforms it intoas

(24)

The pdf in the feature space for class is given by

(25)

Fig. 5. Classified map of the KSC site using GLDB-BU algorithm.

The posterior probability is computed using (4). The
results of all the pairwise classifiers are combined using either
of the methods noted in Section II-C.

V. EXPERIMENTS AND RESULTS

A. Site Description

The wetlands located on the west shore of the Kennedy Space
Center (KSC), FL, and the Indian River contain critical habitat
for several species of water fowl and aquatic life. Mapping the
land cover and its response to wetland management practices
using remotely sensed data from a variety of sensors is the focus
of a multiyear project. In 1996, hyperspectral data were acquired
using NASA’s airborne visible infrared imaging spectrometer
(AVIRIS) over the KSC complex. The test site for this study con-
sists of a series of impounded marshes with vegetation commu-
nities ranging from low, halophyte marshes to high, graminoid
savannah to forested wetlands. Discrimination between indi-
vidual species of marsh vegetation and of woodland vegetation
types is quite difficult because spectral signatures are similar.
The capability for improved discrimination of the various veg-
etation types was investigated using the hyperspectral AVIRIS
data. Fig. 4 shows three bands corresponding to wavelengths
1999 nm, 953 nm, and 527 nm of the AVIRIS data mapped to
the RGB channels, respectively. Fig. 5 shows an example of the
resulting classified map obtained by applying the GLDB-BU al-
gorithm to the AVIRIS data.

The proposed GLDB-TD and GLDB-BU feature extraction
algorithms were applied to a 183 band subset of the 224 bands
(excluding water absorption bands) used in the classification.
The seven upland and five wetland cover types identified for
classification are listed in Table I: Classes 3–7, i.e., cabbage
palm hammock (3), cabbage palm/oak hammock (4), slash pine
(5), broad leaf/oak hammock (6), and Hardwood swamp (7),
are all trees. Class 4 is a mixture of class 3 and oak hammock.
Class 6 is a mixture of broad leaf trees (maples and laurels) and
oak hammock. Class 7 also contains several species of broadleaf
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TABLE I
TWELVE CLASSES IN THEAVIRIS HYPERSPECTRALDATASET

trees. These classes have similar spectral signatures and are very
difficult to discriminate in multispectral and even hyperspectral
data using traditional methods.

There were examples for each class. These were ran-
domly partitioned into 50% training and 50% test sets for each
of the ten experiments. The proposed algorithms were compared
to the SPCT and the LDB approach in terms of classification ac-
curacy and reduction in the feature space. Since there is no sys-
tematic way of estimating the parameters of the training priors
for each class, equal priors are assumed instead of using (5) (the
number of training examples only reflects training samples that
we were able to collect, but does not reflect the true prior of the
classes).

B. Experimental Results

Table II contains the test set accuracies of the SPCT (upper
triangular) and LDB (lower triangular) algorithms over all the
66 pairwise classifiers, while Table III contains the number
of corresponding features used by each of these classifiers for
SPCT and LDB. Although most pairs of classes were reason-
ably well discriminated by the features extracted by SPCT
and LDB, the class pairs [cabbage palm/oak hammock (4),
hardwood swamp (7)], [cabbage palm/oak hammock (4), broad
leaf/oak hammock(6)], [slash pine(5), hardwood swamp(7)],
and [cabbage palm/oak hammock(4), slash pine(5)] were not
discriminated easily. Their classification accuracies over the
test set were significantly less than the mean accuracy of 93%
(see Table VII) over all the 66 pairwise classifiers. Further, the
number of features selected for class pair (4,5) by SPCT (i.e.,
15) and LDB (i.e., ten) is also largeer than the average number
of features utilized (ten for SPCT and seven for LDB).

The classification accuracies over test sets for the GLDB-TD
algorithm for all the 66 pairwise classifiers for both objective

TABLE II
PAIRWISE CLASSIFIER ACCURACIES ONTEST SET FOR SPCT (UPPER

TRIANGULAR) AND LDB (LOWER TRIANGULAR) FEATURE EXTRACTION

ALGORITHMS

TABLE III
AVERAGE NUMBER OFFEATURESUSED FORSPCT (UPPERTRIANGULAR) AND

LDB (LOWERTRIANGULAR) FEATURE EXTRACTION ALGORITHMS

functions, classification accuracy on the training set (upper tri-
angular), and log-odds ratio of posterior probabilities (lower tri-
angular) are shown in Table IV. The corresponding number of
features averaged over ten experiments are listed in Table V for
the GLDB-TD algorithm. There is an average improvement of
almost 5% in classification accuracies in all class pairs when
using GLDB-TD feature extractor as compared to the SPCT or
LDB feature extractors. Moreover, the classification accuracy
over the difficult class pairs (4,5), (4,6), and (5,7) also improved
by similar amounts. However, as a mixture class, class pair (4,7)
still remains difficult to discriminate even by the GLDB-TD
algorithm. Only 2–4 features were utilized by most of the 66
pairwise classifiers when using the GLDB-TD feature extractor
compared to 7–12 features used by SPCT and 5–11 features
used by LDB-based classifiers.

Table VI contains the average classification accuracies over
the test sets (upper triangular matrix) and the number of features
in the reduced space (lower triangular matrix) for the GLDB-BU
algorithm applied to the same data set. For most class pairs,
the classification accuracy was almost 100% and the minimum
of 92.5% was for class pair (4,5), one of the problematic class
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TABLE IV
CLASSIFIER ACCURACIES FOR THEGLDB-TD FEATURE EXTRACTION

ALGORITHM. THE UPPERTRIANGULAR MATRIX CONTAINS ACCURACIES

FORJ = CLASSIFICATION ACCURACY ON TRAINING SET AND THE

LOWER TRIANGULAR MATRIX CONTAINS ACCURACIES FORJ =

LOG-ODDS RELEVANCE (12)

TABLE V
AVERAGE NUMBER OF FEATURES USED BY THE GLDB-TD FEATURE

EXTRACTION ALGORITHM. THE UPPERTRIANGULAR MATRIX IS FORJ =

CLASSIFICATION ACCURACY ONTRAINING SET AND THE LOWERTRIANGULAR

MATRIX IS FORJ = LOG-ODDS RELEVANCE

pairs. Further, note that class pair (4,7) had a classification ac-
curacy of 100% as compared to 82% by GLDB-TD and
by LDB and SPCT. Class pair (4,6) was also classified easily
by the GLDB-BU to yield almost 100% classification accuracy
compared to by SPCT and LDB and 91% by GLDB-TD.
Further, only one feature was required by GLDB-BU to discrim-
inate class pair (4,7) compared to more than four by GLDB-TD,
15 by SPCT, and six by LDB. The number of features required
by most of the classifiers based on GLDB-BU feature extrac-
tion was 1–2, with class pair (4,5) requiring more and still not
being as well-discriminated as other pairs. Fig. 7(a) shows the
bases and distribution of points in the three dimensional (3-D)
feature space for class pair (4,5). Similarly, Fig. 7(b) shows the
bases selected by GLDB-BU for class pair (4,7) and the corre-
sponding distribution of points in the projected 1-D space.

Improvement in classification accuracy with a simultaneous
reduction in the number of features in the feature space can be

attributed mainly to the generalization of the LDB algorithm.
While only highly correlated bands were allowed to merge, their
usefulness was measured in terms of how well they can discrim-
inate the two classes. Since SPCT uses the K–L transform to
reduce the dimensionality, it does not necessarily transform the
input into a highly discriminatory feature space. LDB is lim-
ited by the types of subspaces it can select, and hence its sub-
spaces are inferior to those of the proposed algorithms. Com-
pared to GLDB-TD, the proposed GLDB-BU performs better
both in terms of classification accuracy and the number of re-
quired features. This can be attributed to the following differ-
ences between the two algorithms (i) GLDB-BU is bottom-up
and hence searches through the space of possible bases more ex-
haustively than the top-down GLDB-TD; (ii) The merge func-
tion for GLDB-TD is just the mean while in GLDB-BU, the
merge function is the Fisher direction of projection, which is
expected to perform better in terms of discrimination between
the two classes.

Table VII summarizes the results of Tables I–VI. The original
problem was a 12-class problem that was decomposed into 66
two-class problems, then the 66 pairwise classifiers were com-
bined using the method proposed by Tibshirani [11] (described
in Section II-C). Overall test accuracies for all the four algo-
rithms are contained in Table VII. The high values of classifica-
tion accuracies from GLDB-TD and GLDB-BU for each pair of
classes also resulted in higher accuracies in the overall-class
problem.

C. Computational Complexity

There are three components of the total time complexity
of the feature extraction algorithms that sought a set of linear
transformations or bases. The four algorithms: SPCT, LDB,
TD-GLDB, and BU-GLDB are evaluated in terms of these
three components.

1) Time to evaluate a basis:The goodness of a single basis
is measured by some criteria such as the Bhattacharya dis-
tance in LDB, the amount of variance preserved or eigen
values in SPCT, log-odds ratio of posterior probabilities
in TD-GLDB, and Fisher discriminant in BU-GLDB al-
gorithms. For an -dimensional subset of bands from
through , computation of Bhattacharya
distance (LDB), PCA projection (SPCT) and Fisher pro-
jection (GLDB-BU) take time. In GLDB-TD, only
the mean of the bands is computed, which requires

time.
2) Time to search for a bases set:The feature extraction

algorithms seek multiple localized set of bases. The
LDB algorithm uses the wavelet packet best-bases search
approach that takes for a signal of length .
The SPCT algorithm utilizes edge detection algorithms
on the correlation matrices to first isolate groups of
localized highly correlated bands. This process takes

time. The TD-GLDB algorithm does a top-down
search and prunes the search based on Assumption 1.
This takes time, where is the depth of the tree.
The GLDB-BU algorithm requires time as
it is also bottom-up like the LDB algorithm.
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(a) (b)

Fig. 6. (a) Tree obtained by the GLDB-TD algorithm for class pair cabbage palm hammock (3) and hardwood swamp (7). The three numbers at each node denote
(`; u;J ), the range of the bands[`; u], and goodness measure of each 1-D feature (the classification accuracy on training set). (b) Distribution of all data points
in class 3 and 7 in the 2-D space formed by the group-bands [35,35] and [14,15].

Fig. 7. (a) Bases weights selected by GLDB-BU algorithm for
discriminating classes (4,5) and the corresponding distribution of points
in this three-dimensional (3-D) feature space. (b) Bases weights selected by
GLDB-BU algorithm for discriminating classes (4,7) and the corresponding
distribution of points in this two-dimensional (2-D) space.

3) Number of Bases sets:In conventional classifiers, a
single feature space is sought for dimensionality reduc-
tion. The pairwise classifier framework, however, seeks
one feature space for each pair of classes. This increases
the time complexity of using a pairwise classifier by

times for a -class problems. The SPCT and
LDB algorithms have been used with conventional classi-
fiers that extract only one feature space for all-classes.
This approach does lead to faster feature extraction

TABLE VI
CLASSIFIER ACCURACIES ONTEST SET (UPPERTRIANGULAR) AND THE

NUMBER OF FEATURES USED (LOWER TRIANGULAR) FOR THE

GLDB-BU ALGORITHM

TABLE VII
SUMMARY OF TABLES II THROUGHVI: ( I) TESTACCURACIES, (III ) NUMBER OF

FEATURESAVERAGED OVER ALL THE 66 PAIRWISE CLASSIFIERS([] =
STD. DEVIATION OVER 66 PAIRWISE CLASSIFIERS), AND (III ) OVERALL

ACCURACY AFTER COMBINING THE 66 CLASSIFIERS(fg = STD. DEVIATION

ACROSSTEN EXPERIMENTS)

but as the number of classes grows, the interpretability
and discrimination capability of such a feature space
decreases.

Thus, in terms of evaluating a basis and searching for a set
of bases, the GLDB algorithms are comparable with SPCT and
LDB algorithms. However, when used in conjunction with the
pairwise classifier framework, any feature extraction algorithm
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will have to be used times, increasing the overall time of
learning.

VI. DOMAIN KNOWLEDGE

The feature extraction algorithms used in conjunction with
the pairwise classifier architecture not only increased classifica-
tion accuracies and reduced input dimensionality, but also pro-
vided useful domain knowledge. In this section, some examples
of the kinds of domain knowledge obtained from the best-bases
algorithms are highlighted.

Focused feature extraction based on the original bands of
data for each individual pair of classes results in feature spaces
that are suitable for distinguishing specific pairs of classes. This
knowledge can be very important in determining what sensors or
bands should be used and may be related to the associated phys-
iological characteristics those bands represent in the two land
cover classes. Fig. 6(a) shows an example of the top-down tree
formed by the GLDB-TD algorithm for discriminating classes
cabbage palm hammock (3) and hardwood swamp (7), and both
upland tree classes. The leaf nodes of the tree represent the
group of bands that were merged to their means for greatest dis-
crimination between class pair (3,7). Each node in the tree rep-
resents a subspace of the original 183-dimensional input space.
The first two numbers at each node in Fig. 6(a) represent the

values of that node. The third number shows the
value of that node measured as classification accuracy over the
training data (rounded to nearest integer) (the root node always
represents the 1-D space obtained by merging all the bands [1,
183]). For the class pair (3,7), the root node has a discrimination
value of only 79%, while the subspace [14,15] has a discrimina-
tion of 97% and the subspace [35,35] has a discrimination value
of 100%. The pruning heuristic does not allow further decom-
position of the leaf node, for example [142, 183], because the
value of the discriminant function at this node, i.e., 68% is less
than its parent node [22, 183] i.e., 82%. The class pair (3,7) was
easily distinguished by a pair of very narrow sets of bands, i.e.,
band 35 and the mean of bands [14,15]. Similar trees were ob-
tained for all class pairs.

Fig. 6(b) shows the distribution of all the labeled sample
points in classes 3 (red circles) and 7 (blue crosses) projected
into the space obtained by the bands [35,35] and [14,15] in the
top-down tree shown in Fig. 6(a). These are the first two of the
four group-bands selected by the feature selection algorithm
that follows the tree building phase in the GLDB-TD algorithm.
For any pair of classes, the eventual bands selected by the
GLDB-TD algorithms were more or less the same for different
randomly chosen training examples.

Fig. 7 shows the bases selected by the GLDB-BU algorithm
for two pairs of problematic classes: (4,5) and (4,7). The left
plot shows the Fisher discriminant bases weights obtained
by (21). Each basis is localized within the highly correlated re-
gions shown in Fig. 1. For each pair of classes, different num-
bers and types of bases are obtained in general. The class pair
(4,5) [Fig. 7(a))] required three bases. The distribution of all the
data points in the corresponding 3-D feature space is also shown.
This class pair was hard to separate even by the GLDB-BU al-
gorithm. Class pair (4,7) that was very easily discriminated by

GLDB-BU required only one basis shown in Fig. 7(b). The dis-
tribution of all the data points for these two classes in the 1-D
space shows why GLDB-BU obtains 100% classification accu-
racy for this class pair.

The bands selected by GLDB-TD and GLDB-BU overlapped
for most class pairs. However, since these algorithms merge the
bands differently, in general, different bases are obtained.

VII. CONCLUSIONS

Two new best-bases algorithms adapted to the properties
of hyperspectral data were presented and evaluated using
an AVIRIS data set. These algorithms extend the local dis-
criminant bases algorithm developed for signal and image
classification. The GLDB-TD algorithm uses a top-down
greedy search and is fast but less exhaustive. The GLDB-BU
algorithm performs a more exhaustive, yet efficient bottom-up
search for the best bases to discriminate any two classes and
utilizes the correlation between bands as well as discrimination
between classes to measure the goodness of a basis. Empirical
results for a 12-class problem show improvements of 5 to
10% in classification accuracies using a smaller number of
features relative to LDB and the recently proposed SPCT
algorithms for each of the 66 class pairs. As expected, the
GLDB-BU had slightly better performance than GLDB-TD in
terms of the classification accuracy and the number of features
selected but required more computation. The overall accuracy
after merging the 66 pairwise classifiers to solve the original
12-class problem was also significantly higher for GLDB-BU
than the other approaches. The two extensions of the LDB al-
gorithm suited for hyperspectral data were able to significantly
reduce the input space from 183 dimensions to less than four
dimensions in most cases. Domain knowledge pertaining to the
importance of different bands for distinguishing specific class
pairs and overall importance of each band was also provided.
The best-bases algorithms thus provide a means to “create”
lower spectral resolution sensors, each with only a few bands,
specific to a particular classification problem.
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