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Abstract

In traditional clustering, every data point is assigned to
at least one cluster. On the other extreme, One Class Clus-
tering algorithms proposed recently identify a single dense
cluster and consider the rest of the data as irrelevant. How-
ever, in many problems, the relevant data forms multiple
natural clusters. In this paper, we introduce the notion of
Bregman bubbles and propose Bregman Bubble Clustering
(BBC) that seeksk dense Bregman bubbles in the data.
We also present a corresponding generative model, Soft
BBC, and show several connections with Bregman Cluster-
ing, and with a One Class Clustering algorithm. Empiri-
cal results on various datasets show the effectiveness of our
method.

1 Introduction

Many unsupervised learning problems involve summa-
rizing the data using a small number of parameters. Algo-
rithms such as K-Means partition the data intok clusters
directly for a givenk, while other methods give a hierarchy
of clusters. However, in many real-world problems, only a
subset can be summarized well, while the rest of the data
shows little or no clustering tendencies. Typically in such
cases only a portion of the data, containing multiple natu-
ral groupings, is relevant. These include: (1) Market-basket
data, where only a subset of customers show coherent be-
havior. (2) Many web-mining applications where recover-
ing the most relevant items of key categories is more im-
portant than obtaining an exhaustive list. (3) Many types
of bioinformatics datasets. For example, gene-expression
datasets measure expression level of genes compared to a
control across a few thousand genes. The experiments typi-
cally cover only a specific “theme” such as stress-response,
and therefore only a few genes related to the conditions
show good clustering. Biologists are interested in recov-

ering small, multiple clusters formed from a small subset of
genes that show strongly correlated expression patterns1.
Other types of biological data that share similar properties
include protein mass spectroscopy and phylogenetic profile
data.

For such situations, we would like to design clustering
algorithms that are (1) scalable, (2) can cluster only a vari-
able fraction of the whole dataset, (3) find multiple clusters,
and (4) can work with a wide variety of distance measures.
Existing density-based methods for finding dense clusters
such as DBSCAN [5] are not suitable for many such situ-
ations because of implicit metric assumptions, and are not
scalable to very large problems since they either require an
in-memoryO(n2) distance matrix, or an efficient index that
usually does not exist for high-dimensional datasets. Re-
cently introduced One Class Clustering methods such as
OC-IB [3] and BBOCC [8] use local search that are much
more scalable and general2 but can only find a single dense
cluster.

2 Contributions

This paper substantially generalizes the single-cluster
approach of BBOCC, and consists of three major ex-
tensions/enhancements that lead to a robust and scalable
framework for finding multiple dense clusters. Our main
contributions are as follows:

1. We present a generalization of BBOCC called Breg-
man Bubble Clustering (BBC) that can simultane-
ously find k dense clusters. BBC with a time and
space complexity ofO(nd) (for a dataset withn data
points ind dimensions) for each iteration, is scalable

1Often such clusters map to biological processes that are involved in
the specific context, for example stress.

2Both methods useBregman divergences, a large class of diver-
gence measures that includes Squared Euclidean distance, K-L divergence,
Itakura-Saito distance and Mahalanobis distance.



to much larger and higher-dimensional datasets than
existing density-based methods. It also extends Eu-
clidean distance centric density-based clustering to a
large class of popular divergences known as Bregman
divergences.

2. We present an extension to BBC calledPressuriza-
tion that substantially improves the quality of the local
search and overcomes local minima while preserving
the scalability of the local search approach. The re-
sulting clustering is extremely robust and shows very
low sensitivity to initialization.

3. We develop a generative (soft) model consisting of a
mixture ofk exponentials and a uniform “background”
distribution that leads to several insights into the prob-
lem of finding dense clusters using Bregman diver-
gences. BBC and many existing clustering algorithms
are shown to be special cases of this model.

4. We performed evaluations on a variety of datasets
showing the effectiveness of our framework on low,
medium and very high-dimensional problems, as com-
pared to Bregman Clustering, Single Link Agglomer-
ative and DBSCAN.

5. An appropriate model selection strategy is discussed.

Notation: Bold faced variables, e.g.x represent vec-
tors. Sets are represented by calligraphic upper-case alpha-
bets such asX and are enumerated as{xi}ni=1 wherexi are
the individual elements.|X | represents the size of setX .
Capital letters such asX are random variables.R andR

d

represent the domain of real numbers and ad-dimensional
vector space respectively.

3 Related Work

A variety of density-based methods are based on the idea
of local density estimation to cluster a part of the data.
These approaches also have the ability to find arbitrary
shaped clusters. DBSCAN [5] is a popular method in the
database community for clustering and indexing 2-D and 3-
D datasets. Jiang et al. [11] applied density based clustering
to gene-expression data.

A One Class Clustering algorithm3 called OC-IB was
proposed [3] that uses the notion of a Bregmanian ball to
find a single dense region using an iterative relocation al-
gorithm. Gupta and Ghosh [8] described an improved local
search called BBOCC, and provide performance guarantee
using an enumeration-based seeding. Earlier approaches to
One Class Clustering [18, 17] used convex cost functions

3Also known as One Class Classification.

that are good for finding large-scale structures, or corre-
spondingly, for finding a small number of outliers. Cram-
mer and Chechik [3] explain why these approaches are not
suitable when the goal is to find locally dense regions. Our
approach is similar to that of [8] and [3], with the addi-
tional property that we can find multiple dense regions.

In the context of clustering microarray data, discovering
overlapping gene clusters is popular since many genes par-
ticipate in multiple biological processes. Gene Shaving [9]
uses PCA to find a small subset of genes that show strong
expression change compared to the control sample, and al-
lows them to be in multiple clusters.

4 Bregman Bubble Clustering (BBC)

4.1 Bregman Divergences

Bregman divergencesform a family of distance mea-
sures, defined as follows: Letφ : S 7→ R be a strictly
convex function defined on a convex setS ⊆ R

d, such
that φ is differentiable onint(S), the interior ofS. The
Bregman divergenceDφ : S × int(S) 7→ [0, inf) is de-
fined asDφ(x,y) = φ(x)−φ(y)− (x−y,▽φ(y)) where
▽φ is the gradient ofφ. For example, forφ(x) =‖ x ‖2,
Dφ(x,y) =‖ x − y ‖2, which is the Squared Euclidean
Distance. Similarly, other forms ofφ lead to other Breg-
man divergences such as Logistic Loss, Itakura-Saito Dis-
tance, Hinge Loss, Mahalanobis Distance and KL Diver-
gence [15, 2].

4.2 Cost Function

Let X = {x}ni=1 ⊂ C ⊆ R
d be the set of data points.

LetG ⊂ X represent a non-exhaustive clustering consisting
of k clusters{Cj}kj=1 with X\G points that are “don’t care”,
i.e., they do not belong to any cluster. For a given Bregman
DivergenceDφ(x,y) 7→ [0,∞), and a set ofk cluster rep-
resentatives{cj}

k
j=1 ∈ R

d for the k clusters in clustering
G = {Cj}

k
j=1, we define the costQ as the average distance

of all points inG from their assigned cluster representative:

Q(G, {cj}
k
j=1) =

1

|G|

k∑

j=1

|Cj|∑

i:xi∈Cj

Dφ(xi, cj), (1)

4.3 Problem Definition

Given s, k andDφ as inputs, wheres out of n points
from X are to be clustered into a clusteringG ⊂ X
consisting ofk clusters, where1 ≤ k < n andk ≤ s ≤ n,
we define the clustering problem as:

Definition 1: Find the smallest costG consisting ofk
clusters inX , such that|G| = s.



4.4 Bregman Bubbles

A Bregmanian ball[3] Bφ(r, c) with radiusr and cen-
troid c defines a volume inRd such that all pointsx where
Dφ(x, c) ≤ r are enclosed by the ball. Given a setX =
{xi}

n
i=1 of n points inR

d, the cost of the ball is defined as
the averageDφ(x, c) of all points enclosed by it.

Given a set ofk cluster representatives, and a fixeds, it
can be shown that the clustering that minimizesQ consists
of: (1) the assignment phase, where each point is assigned
to the nearest cluster representative, and (2) picking points
closest to their representatives first untils points are picked.
Letrmax represent the distance of the last (sth) picked point
from its cluster representative.

These clusters can be viewed ask Bregman bubblessuch
that: (1) they are either pure Bregmanian balls of radius
r ≤ rmax or are (2)touchingbubbles that form when two or
more Bregmanian balls, each of radiusrmax overlap. Two
Bregmanian ballsBφ(c1, r1) andBφ(c2, r2) are said to
overlap when∃x : (Dφ(x, c1) < r1) ∧ (Dφ(x, c2) < r2).
At the point of contact, the touching bubbles form linear
boundaries4 that result from assigning points to the closest
cluster representative. For the part of its boundary where a
bubble does not touch any other bubble, it traces the contour
of a Bregmanian ball of radiusrmax. Therefore, bubbles
arise naturally as the optimum solution forQ for a givens,
k andDφ.

(a) (b)

Figure 1. An illustration showing (a) three
Bregman bubbles, and (b) a Bregmanian ball
(solid line), and two other possible balls (dot-
ted lines). The union of the points enclosed
by the three possible balls in (b) is the same
as the set of points enclosed by the three
bubbles.

Figure 1 illustrates a 2-D example of Bregman bubbles
vs. balls. Unlike Bregmanian balls, the boundary of the
Bregman bubbles can only be defined in the context of other
bubbles touching it. It is important to note that the volume
of the convex hull of points in one bubble could be smaller
than that of the adjacent touching bubble, and the bubbles
could also have different number of points assigned to them.

4This can be shown to be true for all Bregman divergences [2].

Algorithm 1 BBC-S

Input: SetX = {x}ni=1 ⊂ C ⊆ R
d, Bregman divergenceDφ,

no. of clustersk, desired clustering sizes.
Output: PartitioningG∗ containingk clusters{Cj}kj=1, and the

correspondingk cluster representatives{c∗
j }
k
j=1.

Method:
if {cj}

k
j=1 = ∅ then

5: Initialize cluster representatives:{cj}
k
j=1 ∈ C

end if
Gl = ∅;G = ∅; q = ∞; qp = ∞;
repeat

for i = 1 to n do
10: [dmini , labi] = minkj=1(Dφ(xi, cj))

end for
[val, idx] = sort(dmin)
qtmp = 0; sc = 0; {Cj}

k
j=1 = ∅

while (sc < s) do
15: sc = sc + 1;

qtmp = qtmp + val(sc)
Add xidx(sc) to clusterClab(idx(sc))

end while
{cp

j }
k
j=1= {cj}

k
j=1

20: qp = q; q = qtmp/s
Gl = G;G = {Cj}

k
j=1

for j = 1 to k do
cj = 1

|Cj|

∑|Cj |

i:xi∈Cj
xi

end for
25: until (Gl = G) ∧ qp = q

Return{c∗
j }
k
j=1 = {cj}

k
j=1;G

∗ = G

4.5 BBC-S Algorithm

For most real life problems, even for a smalls, find-
ing the globally optimal solution for problem definition 1
would be too slow. However, a fast iterative relocation al-
gorithm that guarantees a local minima exists.Bregman
Bubble Clustering-S(BBC-S, Algorithm 1) starts withk
centers and a sizes as input. Conceptually, it consists of
three stages: (1) the assignment phase, where each point
is assigned to the nearest cluster representative, (2) picking
points closest to their representatives first untils points are
picked, and (3) updating the centers. It is interesting to note
that stages 1 and 3 of BBC-S are identical to the Assignment
Step and the Re-estimation step of the Bregman Hard Clus-
tering [2], properties that lead to the unification described
in Section 8. Stages 1, 2 and 3 are repeated until there is no
change in assignment between two iterations - i.e. the al-
gorithm converges. Algorithm 1 describes a more detailed
implementation of BBC-S where line number 10 represents
Stage 1, lines 14 to 18 map to Stage 2, while lines 22-24
represent Stage 3. We randomly pickk data points fromX
as the starting cluster representatives, but alternative initial-
ization schemes could be implemented.



Theorem 4.1. [2]: Let X be a random variable taking
values inX = {xi}

n

i=1 ⊂ C ⊆ R
d following ν 5. Given

a Bregman divergenceDφ : C × int(C) 7→ [0, inf), the
problem

min
c∈C

Eν [Dφ(X, c)]

has a unique minimizer given byc∗ = µ = Eν [X ].

Proposition 4.2. Algorithm 1 is guaranteed to converge to
a local minima for all Bregman divergences.

This follows from the observation that at each iteration
the costQ either declines or stays the same. It is easy to
show that for a given set of cluster representatives, the clus-
ter assignment stages 1 and 2 give the lowest possible cost.
Therefore, in stages 1 and 2, the cost cannot increase but can
decrease. If no point’s cluster assignment changes in stages
1 and 2, the cost stays the same and the algorithm converges.
Similarly the costQ at stage 3 can either decline or stay
the same because of Theorem 4.1. By using a heap sort at
stage 2, each iteration of BBC-S takesO(nkd + s logn)
time making it really fast.

4.6 BBC-Q: Dual formulation with fixed
qmax

An alternative formulation of the BBC algorithm is pos-
sible where a threshold costqmax is specified rather than
the sizes:
Definition 2: Find the largestG consisting ofk clusters in
X with cost no more thanqmax.

We can show that this definition also results in Bregman
bubbles as the optimal solution for a given set ofk cluster
representatives. Definitions 1 and 2 are equivalent, since for
a givenqmax there exists a largests for k bubbles, and for
the sames, the same solution has the same smallest possible
costqmax. Algorithm 1 can be easily modified to work with
qmax by modifying Stage (2) to stop adding points when
the cost is more thanqmax. However, this seemingly minor
modification results in two very different algorithms. For a
fixed s as input, for iterations in sparse regions the bubbles
expand untils points are covered. As the bubbles move into
denser regions, their radii shrink. BBC-Q does not have
this property and generally gives worse performance when
the bubbles are small. This observation led us to the idea
of Pressurization discussed in Section 6. Furthermore, in
many problems there is no intuitive way to determineqmax,
while users often have an idea of what fraction of their data
might cluster well. This makesDefinition 1 a more natural
choice.

5Theorem 4.1 is more general in that it holds for any measureν defined
on the samples. For the BBC formulation we assume all points to have
the same weight, but we later discuss Soft BBC in Section 5 that uses a
probabilistic weighting.

5 Soft BBC

5.1 Bregman Soft Clustering

Banerjee et al. [2] proposed a soft clustering algorithm
calledBregman Soft Clusteringas a mixture model consist-
ing ofk distributions, taken from the family ofregular expo-
nential distributions(that include well known distributions
such as Gaussians, Multinomials, Poisson, etc.). They went
on to prove the following important result:

Theorem 5.1. There is a bijection between regular expo-
nential families and regular Bregman divergences (equation
2). p(ψ,θ)(xs) = exp(−βDφ(xs, µ))fφ(xs) (2)

whereφ is a convex function, and the conjugate function
of ψ, Dφ is the corresponding Bregman divergence,p(ψ,θ)

is the corresponding regular exponential distribution with
cumulantψ, fφ is a uniquely determined normalizing func-
tion that depends on the choice ofφ, β is a scaling factor,µ
is the expectation parameter,θ are the natural parameters of
pφ, andxs is the sufficient statistics vector corresponding to
x. For the sake of notational simplicity, for the rest of the
paper, unless stated explicitly otherwise, when we mention
x we implicitly refer to the sufficient statistics ofx, i.e. xs.

Examples of Bregman divergences and the correspond-
ing exponential distribution that have been popular for both
hard and soft clustering models include squared Euclidean
Distance (Gaussian distribution), KL-divergence (multino-
mial distribution) and Itakura-Saito distance.

5.2 Motivation for Soft BBC

BBC can be thought of as a non-exhaustive hard clus-
tering where points can belong to either one of thek clus-
ters or to a “don’t care” group. Correspondingly, Soft BBC
can be formulated as modeling the data as a mixture ofk
distributions from the exponential family and an additional
“background” distribution that corresponding to the “don’t
care” points. Since we are trying to findk dense clusters,
for a good solution the “don’t care” group should be the
least dense. One way to model this low density background
is with a uniform distribution. The goal of building such a
Soft BBC model is to give us deeper insights into the im-
plicit modeling assumptions behind BBC.

5.3 Model

The Soft BBC model is defined as follows: LetX =
{xi}

n

i=1 be the dataset consisting ofn i.i.d. points andk
be the desired number of clusters. LetY = {Yi}

n

i=1 be the
hidden random variables taking values from 0 tok corre-
sponding tok + 1 mixture components associated with the
data points, where 0 corresponds to a uniform background
distribution, and1 to k corresponds tok exponential mix-
tures. The likelihood of the data points is given by:



Algorithm 2 Soft BBC

Input: SetX = {x}ni=1 ⊂ C ⊆ R
d, Bregman divergenceDφ, no.

of clustersk, p0, specifying the background distribution,α0 for
Case B.

Output: Θ∗, local maximizer ofL(Θ|X ) (equation 4) whereΘ =
{{θj , αj}

k
j=1, α0} for case (A) and{θj , αj}kj=1 for case (B),

soft partitioning{{p(Yi = j|xi)}
k
j=0}

n
i=1.

Method:
Initialize p0, {θj , αj}kj=1 with some0 ≤ p0 < 1, θj ∈ C,
αj ≥ 0, such that

∑k

j=0 αj = 1.
repeat

{TheE Step}
for i = 1 to n do

for j = 0 to k do
p(Yi = j|xi) is computed from equation (7) and (8),
wherep(ψ,θ)(xi|θj) is defined by equation 2.

end for
end for
{TheM Step}
for j = 0 to k do

Updateαj using equation 10 for case A and 13 for case B.
Updateθj using equation 12.

end for
until convergence

p(xi) =

k∑

j=1

αjp(ψ,θ)(xi|θj) + α0p0, [i]
n
1 (3)

where {αj}
k
j=0 denotes the distribution priors,

{p(ψ,θ)(·|θj)}
k
j=1 the conditional distributions of the

k clusters, andp0 denotes the probability density of the
uniform distribution. Assuming the points are sampled
i.i.d., the log-likelihood of the observed data is given by:

L(Θ|X ) =

n∑

i=1

log(

k∑

j=1

αjp(ψ,θ)(xi|θj) + α0p0) (4)

whereΘ denotes the priors and mixture component pa-
rameters. It is non-trivial to directly optimize the likelihood
function due to the presence of mixture components.

5.4 Soft BBC EM Algorithm

Sincep0 is a uniform distribution by definition,1/p0 de-
fines the volume of its domain. This domain should include
the convex hull ofX , which yields an upper bound forp0.
In equation 4, keeping all other parameters constant, a lower
value ofp0 will always result in a lower likelihood. For
now, we only consider the case wherep0 is set to a fixed
value. Therefore, the only parameters we can optimize over
are the priors{αj}kj=0 and the exponential mixture param-
eters{θj}kj=1. We consider two slightly different scenarios:
(A) whereα0 is a variable parameter, and (B) whereα0 is

a fixed value≤ 1. To maximize the log-likelihood func-
tion, we adopt a standard EM-based approach [14] and first
construct the negative free energy function:

F (P̃ ,Θ) =

n∑

i=1

Ep̃(Yi,xi)[log p(xi, Yi|Θ)] (5)

−

n∑

i=1

Ep̃(Yi,xi)[log p(Yi|xi)]

whereP̃ = {{p̃(Yi = j|xi)}
n

i=1}
k
j=1 are the current es-

timates ofY. It can be shown that the EM procedure with
theE andM steps alternately optimizingF (P̃ ,Θ) over P̃
andΘ is guaranteed to converge to a local maximaP̃ ∗ and
Θ∗. Furthermore, it can be shown that a local maxima of
F (P̃ ,Θ) leads to a local maxima on the original likelihood
given by equation 4. Hence we will now focus on obtaining
the updates involved in theE andM steps for the two cases.
Case (A):α0 is not fixed

E-Step: In this step we optimizeF (P̃ ,Θ) (equation 5)
overP̃ under the constraints that the

∑k

j=0 p̃(Yi = j|xi) =
1, [i]n1 , andp̃(Yi = j|xi) ≥= 0, ∀i, j. Using Lagrange mul-
tipliers {λi}

n
i=1 for the n equality constraints and taking

derivatives w.r.t.p̃(Yi = j|xi), we obtain the update equa-
tion for re-estimating the probability of each point coming
from any of the 0 tok components, given the current model
parameters:

log p(xi, Yi = j|Θ) − 1 − log p̃(Yi = j|xi) − λi = 0 (6)

wherep(xi, Yi = j|Θ) is αjp(ψ,θ)(xi|θj) for 1 ≤ j ≤ k
andα0p0 for j = 0. On eliminating the Lagrange multipli-
ers, we obtain:

p̃(Yi = j|xi)
∗ =

αjp(ψ,θ)(xi|θj)
∑k

j=1 αjp(ψ,θ)(xi|θj) + α0p0

, 1 ≤ j ≤ k (7)

=
α0p0∑k

j=1 αjp(ψ,θ)(xi|θj) + α0p0

, j = 0 (8)

M-Step: In this step we optimizeF (P̃ ,Θ) overΘ under
constraints

∑k

j=0 αj = 1 andαj ≥ 0, ∀j. It can be shown
that the inequality constraints are not binding. Using La-
grange multiplierζ for the constraint and taking derivatives
w.r.t. αj , [j]k0 , we obtain:

n∑

i=1

p̃(Yi = j|xi)

αj
+ ζ = 0, [j]k0 (9)

and on eliminatingζ, we obtain:

α∗
j =

∑n

i=1 p̃(Yi = j|xi)

n
, [j]k0 (10)

Note that the update equation for the background distri-
bution prior,α0, turns out to be the same as that for the
exponential mixture distributionsα1 to αk. The optimal



mixture component parameter estimation can be obtained
by setting derivatives over{θj}nj=1 to 0 as follows:

n∑

i=1

p̃(Yi = j|xi)∇θj
p(ψ,θ)(xi|θj) = 0 (11)

This results in the update equation for the exponential
distribution mixtures{θ}kj=1 as the weighted average of
x [2]:

θj =

∑n

i=1 p(Yi = j|xi)xi∑n

i=1 p(Yi = j|xi)
(12)

Case (B):α0 is fixed
E-Step: Since keepingα0 fixed does not result in any

additional constraints, this step is identical to that of case
A.

M-Step: Keepingα0 constant modifies the constraints
on the priors so that we now require

∑k

j=1 αj = 1 − α0

andαj ≥ 0, ∀j. As before, the inequality constraints are
not binding and by using a Lagrange multiplier and taking
derivatives, we arrive at:

α∗
j = (1 − α0)

∑n

i=1 p̃(Yi = j|xi)∑k

j=1

∑n

i=1 p̃(Yi = j|xi)
(13)

The optimal mixture component parameters are obtained
exactly as in case A.

Choosing an appropriatep0: For case (A) of the Soft
BBC algorithm, one can show that the parameterα0 is es-
sentially a function ofp0 given by the relation (from theM
step):

α0 =
1

n

n∑

i=1

α0p0∑k

j=1 αjp(ψ,θ)(xi|θj) + α0p0

(14)

Using this relation, for a givenα0 and a set of mixture
component parameters, it is possible to solve forp0. But
one cannot do this in the EM framework since the best value
for p0 is always the highest possible one. However this rela-
tionship allows us to calculate the value ofp0 for the initial
seed parameters. A fast approximation ofp0 can be esti-
mated by (1) performing the first E step (equations 7 and
8), then (2) computing thepimax = maxkj=0(p(Yi = j|xi))

for eachxi, and then (3) pickingp0 as thesth largest value
in pimax[i]

n
1 wheres = ⌈α0n⌉.

6 Improving local search with Pressurization

BBC-S is able to find locally dense regions because of
its ability to explicitly ignore large amounts of data by con-
sidering only points close to the cluster representatives for
cluster membership. During each iteration, the bubble rep-
resentatives move to a lower cost nearby location. But when
the dense bubbles are naturally small, i.e. thresholds is

small, only a few close neighbors get assigned, thereby de-
creasing the mobility of the representatives at each itera-
tion. This makes it difficult for BBC-S to find small, dense
regions far from initial seed locations. On the other hand,
starting with a larges would be contrary to the goal of find-
ing small dense regions. This problem is even more severe
with BBC-Q, since the bubbles cannot expand automati-
cally in sparser regions.

Is there a way to improve upon the ability of BBC-S to
“expand” in a sparse region, while still optimizing cluster-
ing over small, dense regions? We start by defining a con-
cept calledBregman bubble pressurethat is analogous to
the pressure around air bubbles in a body of water on Earth.
When air-bubbles rise in a column of water, the outside
pressure drops, and the bubbles expand. In the case of BBC-
S, we can imagine this external pressure as being inversely
proportional to the input thresholds; a larger threshold cor-
responds to a smaller external pressure, leading to larger
bubbles.

BBC-Press: We propose an algorithmic enhancement
to BBC calledPressurizationthat is designed to improve
the quality of the local minima discovered. We start the
first iteration of BBC-S with a small enough pressure to
cause all points to be assigned to some cluster, and slowly
increase the pressure after each iteration. An additional
parameterγ ∈ [0, 1) that controls the rate of pressure
increase is used as an exponential decay parameter, and
sj = s+ ⌊(n− s)γj−1⌋ is used instead ofs for thejth iter-
ation. Convergence is tested only after(n− s)γj−1 < 1. A
somewhat slower but more robust alternative involves run-
ning BBC-S to full convergence after each recomputation of
sj , and yields slightly better empirical results. Pressuriza-
tion can also be implemented for BBC-Q by varyingqmax
instead ofs.

Soft BBC-Press: Pressurization can also be extended to
Soft BBC for Case B whenα0 is not updated. Whenα0

andp0 are large (close to 1), only a small amount of data is
“explained” by thek exponential mixtures. This may lead to
bad local minima problems similar to (although less severe
than) the one faced in BBC. Therefore, we propose a soft
version of Pressurization that takes a decay parameterτ ∈
[0, 1) and runs Soft BBC (Case B) multiple times as follows:
(1) start with some initial model parameters{θ1j}

k
j=1 and

run Soft BBC to convergence. (2) at trialr setα0 to αr =
α0(1 − τr−1), and forr > 1 set current model parameters
to the output of last trial:{θrj}

k
j=1 = {θr−1

j }kj=1. Repeat
step (2) untilαr − α0 is smaller thanǫ, and then perform a
final run withαr = α0.

7 Extension to Pearson Distance

Pearson Correlation(P ) is a popular similarity measure
for clustering gene-expression and other biological datasets.
Pearson Distance (DP ) between two data pointsx andy is



defined as1 − P (x,y), and is also equal to the Squared
Euclidean Distance between z-scored6 x and z-scoredy.
WhenDφ is replaced byDP in Equation 1, we refer toQ
asAverage Pearson Distance(APD). The following directly
follows from a proof given by Dhillon and Modha [4]:

Proposition 7.1. For any cluster Cj in G, the cluster
representativecj

∗ that minimizes contribution to APD
by that cluster is equal to the mean vector of the
points in Cj projected onto a sphere of unit radius, i.e.

cj
∗ = argmin

cj

(APD(Cj , cj)) =
Cm

j

‖Cm
j
‖ , where Cmj =

1
|Cj|

∑|Ci|
i:xi∈Cj

zscore(xi).

Therefore, whenDφ is replaced withDP for BBC-S
(Algorithm 1), the optimal representative for each cluster
is computed by averaging the z-scored points rather than
the original points, and then again z-scoring the resultant
mean. This minor modification makes BBC-S applicable to
DP guaranteeing a local minima in terms of APD cost7.

8 A unified framework

8.1 Unifying Soft BBC & BBC

We are now ready to look at how the generative model
Soft BBC relates to the BBC problem, specifically the for-
mulation where the number of points classified into thek
real clusters (excluding the “don’t-care” cluster) is fixed
(Definition 1, Section 4.3), and show the following:

Proposition 8.1. BBC optimizes a lower bound on the log-
likelihood objective function of Soft BBC.

Proof. Let us consider the cost function:

L2(Θ|X ) =

n∑

i=1

Ep†(Yi=j|xi,Θ)[log p(xi, Yi = j|θj)]

(15)
wherep†(Yi = j|xi,Θ) = 1 for j = argmax

0≤j≤k
p(xi, Yi =

j|θj) and 0 otherwise, which is essentially equivalent to the
posterior class probabilities based on the hard assignments
used in BBC. It can be shown [12] that for a fixed set of
mixture parametersΘ = {θ}kj=1, andL(Θ|X ) being the
log-likelihood objective of Soft BBC (Equation 4):

L2(Θ|X ) ≤ L(Θ|X ) (16)

This result is independent of the choice of priors
{αj}

k
j=0. Note that whileL(·) depends upon the priors

while L2(·) does not. For our choice of mixture compo-
nents, based on Equations 2 and 16, one can readily obtain
the following form forL2(·):

6Often used in statistics, normally performed between points across a
dimension. Here we perform it between dimensions for each data point.

7The same modification works for BBC-Q also.

L2(Θ|X ) =

k∑

j=1

k∑

∀Yi=j

log pφ(xi) − (17)

βDφ(xi, θj) +
∑

∀Yi=0

log(p0)[i]
n
i=1

If the number of points assigned to the uniform distribu-
tion is fixed ton−s, s points are assigned to thek exponen-
tial distributions, andp0 andβ are fixed, we can see from
Equation 17 that:

Proposition 8.2. MaximizingL2(Θ|X ) is identical to min-
imizing the BBC objective functionQ (Equation 1).

From Proposition 8.2 and Equation 16 we have the proof
for Proposition 8.1.

Proposition 8.3. BBC with a fixeds as input (Definition 1,
Section 4.3) is a special case of Soft BBC with fixedα0.

Proof. Let us consider an extreme case whenβ → ∞ for
Soft BBC (see Equation 4 and 2). Then the class poste-
rior probabilities in Soft BBC converge to hard assignment
(BBC) ensuring thatL(Θ|X ) = L2(Θ|X ) in Equation 17.
Since BBC is equivalent to optimizingL2(Θ|X ) (Proposi-
tion 8.2), we can also view BBC with fixeds as input as a
special case of Soft BBC with fixedα0.

8.2 Other unifications

The following other interesting unifications can also be
shown easily for our framework:

1. BBC is a special case of BBC-Press whenγ = 0.

2. Bregman Bubble Clustering becomes BBOCC when
k=1.

3. Soft BBC8 reduces to Bregman Soft Clustering when
p0 = 0.

4. Bregman Bubble Clustering reduces to Bregman Hard
Clustering (which is a special case of Bregman Soft
Clustering) whenqmax = ∞ (for BBC-Q) or when
s = n (for BBC-S).

Figure 2 summarizes the hierarchy of algorithms de-
scending from BBC-Press and Soft BBC. We could think
of BBC as a search under “constant pressure”, and for
Bregman Hard Clustering this pressure is zero. Note that
for k = 1, Bregman Clustering is not very meaningful9,

8For both cases A and B.
9For k = 1, Bregman Soft Clustering returns a single exponential dis-

tribution fit to the whole data while Bregman Hard Clusteringsimply re-
turns the mean of the whole data.



Figure 2. Unification of various algorithms for a given Bregm an divergence Dφ: (left) BBC, BBOCC
and Bregman Hard Clustering are special cases of BBC-Press. (right) Bregman Hard and Soft Clus-
tering, BBC-S, BBOCC-S and a ”soft” BBOCC (consisting of one exponential and a uniform back-
ground mixture) are special cases of Soft BBC obtained as spe cific combinations of (i) whether
β → ∞, (ii) whether α0 is 0 (equation 3), and (iii) whether k is 1. Bregman Clustering (both hard and
soft) for k = 1 does not result in a useful algorithm. BBOCC-S and BBOCC-Q re present BBOCC with
fixed s or qmax as inputs respectively.

whereas BBC gives rise to BBOCC. In the context of find-
ing dense regions in the data, BBC can be thought of as a
conceptual bridge between the problem of one class cluster-
ing and exhaustive k class clustering. However, the defin-
ing characteristic of BBC is its ability to find small, dense
regions by modeling a small subset of the data. BBC com-
bines the salient characteristics of both Bregman Hard Clus-
tering and BBOCC resulting in an algorithm more powerful
than either, and that works across all Bregman divergences.
BBC-S is a natural extension of BBOCC-S following di-
rectly from a common underlying generative model, and is
not just a heuristic; the difference in the generative model
is only in having a single vs. multiple exponential distribu-
tions mixed with a uniform background.

9 Experiments

9.1 Datasets

Table 1. A summary of the datasets used.
Mic. stands for gene-expression data from
microarray experiments, Sim. for artifi-
cial/simulated data, Sq. E. stands for
Squared Euclidean, and D is the distance
function used for clustering. |C| is the num-
ber of classes in the data.

Dataset Source n d D |C|

Gasch Array Mic. 173 6, 151 DP 12
Lee Mic. 5,612 591 DP NA
Gauss-2 Sim. 1,298 2 Sq. E. 5
Gauss-10 Sim. 2,600 10 Sq. E. 5
Gauss-40 Sim. 1,298 40 Sq. E. 5

Table 1 describes the essential attributes of the datasets
that we report results on. The Gauss-2 dataset was gener-
ated using five 2-D Gaussians of different variances (Fig-
ure 3) and a uniform distribution. Similar datasets were
generated with five Gaussians in 10-D and 40-D to pro-
duce Gauss-10 and Gauss-40 datasets. These datasets
are useful for verifying algorithms since the true labels
are known exactly. Both Gasch Array [6] and Lee [13]
are yeast microarray datasets. The Gasch Array dataset
contains labels for experiments, and is therefore use-
ful for evaluating clustering of experiments in a very
high-dimensional (6,151) space. The Lee dataset con-
sists of 591 gene-expression experiments on 5,612 yeast
genes obtained from the Stanford Microarray database [7]
(http://genome-www5.stanford.edu/) and also contains a
Gold standard based on Gene Ontology (GO) annotations
(http://www.geneontology.org). The Gold standard con-
tains 121,406 pairwise links (out of a total of 15,744,466
gene pairs) between 5,612 genes in the Lee data that are
known to be functionally related.

9.2 Evaluation Methodology

Evaluation Criteria : Evaluating clustering is a chal-
lenging problem since the clustering itself is unsupervised
and there is no direct way of identifying correspondence
between class labels and clusters. Besides using the in-
ternal cost measureQ, we also performed three different
types of evaluations based upon the type of labeled data:
(1) Adjusted Rand Index(ARI) [10], which returns 1 for a
perfect agreement between clusters and class labels and 0
when the clustering is as bad as random assignments. (2)p-
value: We obtained p-values for individual clusters of Yeast
genes usingFunspec(http://funspec.med.utoronto.ca/) [16].
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Figure 3. Illustration of Gaussian Bubbles generated by Sof t BBC-Press on Gauss-2 data when vari-
ances are updated for s=750, for k = 7 (left), and k = 5 (right). k was set to 7 in the left figure to
illustrate non-linear boundaries produced in Soft BBC. Sma ll dots are points in the “don’t-care” set.

(3) Overlap Lift: It is not possible to use ARI to evaluate
against the links in the Lee Gold standard. Instead, we com-
pute statistical significance as follows:k clusters of size
{wj}

k
j=1 result inlc =

∑k

j=1 wj(wj − 1)/2 links. If ltrue
is the number of correct links observed then Overlap Lift
= ltrue/(flinkedlc), representing how many times more
correct links are observed as compared to random chance,
whereflinked is the fraction of gene pairs linked in the Gold
standard.

For all evaluations, the points in the background or the
“don’t care” cluster are excluded from the evaluation. Note
that the clustering is performed in a completely unsuper-
vised setting and the class labels were only used for evalua-
tion.

Evaluating Soft BBC: We tested Soft BBC with Gaus-
sians as the exponential mixture components. If the Gaus-
sian variances are treated as a part of the mixture parameters
{θj}

k
j=1 (equation 3), it is possible to get clusters of variable

diameters (Figure 3, right) that fit natural cluster diameters.
There are eight possible variations of Soft BBC depending
upon whether (i)α0 is updated (Case A vs. B, Section 5.4),
(ii) variances are updated or not, and (iii) all cluster vari-
ances are forced to be equal or not. We present results on the
Soft BBC implementation that gives the best results: updat-
able, unequal variances with a fixedα0. We also compared
Soft BBC for Gaussians with an alternative model that we
callMixture-6where the uniform background distribution is
replaced by a large, fixed variance Gaussian while the other
k Gaussian variances are updated, andα0 is fixed.

Hard Assignments for Soft BBC: On convergence, the
points are assigned to the mixture with the largest proba-
bility. A post-processing was performed that recomputesp0

such that exactly(n−s)/n points are assigned to the “don’t
care” set. A similar conversion was required for evaluating
the soft model Mixture-6.

Comparison with other methods: We also compared
our method with Bregman Hard Clustering, Single Link Ag-
glomerative clustering and DBSCAN. Bregman Hard Clus-
tering assigns every data point into a cluster. To be able
to compare it meaningfully with BBC, we pickeds points
closest to their respective cluster representatives. Thispro-
cedure was also used for Single Link Agglomerative clus-
tering. For the two DBSCAN parameters, we setMinPts
to 4 as recommended by Ester et al. [5], while we searched
for Eps that resulted ins points in clusters.k is automati-
cally estimated by DBSCAN while for all the other methods
and datasetsk was set to|C| (Table 1), except for the Lee
dataset (where|C| is not known) where we setk to 10. All
five methods use the same (and the appropriate) distance
measure; Sq. Euclidean for the Gaussian and Pearson Dis-
tance for the gene-expression datasets respectively.

9.3 Results

Pressurization with Soft BBC: For the lower dimen-
sional datasets, Soft BBC-Press, does extremely well, giv-
ing near-perfect results (ARI≈ 1) for up to 40% coverage
on Gauss-10 data and an ARI between 0.8 and 0.9 for up
to 40% coverage on Gauss-2 data. We only tested the Soft
BBC and the Mixture-6 models on Gauss-2 and Gauss-10
datasets, mainly to validate Soft BBC and Soft BBC-Press.
This is because, exponential mixture models in general, in-
cluding Bregman Soft Clustering, Mixture-6 and Soft BBC
all suffer from an inherent flaw that makes them imprac-
tical for high dimensional datasets; there are rounding er-
rors while estimating the mixture membership probabilities
(equation 7), and these rounding errors worsen exponen-
tially with the dimensionality of the datad, so much so that
the models generally do not work well beyondd = 10.
However, the main purpose of designing Soft BBC was
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Figure 4. Labeled evaluation on simulated Gaussian data of i ncreasing dimensionality using ARI:
(a), (b) and (c) demonstrate the effectiveness of Pressuriz ation. (d), (e) and (f) show effectiveness of
BBC-Press as compared to three other methods: Bregman Hard C lustering, Single Link Agglomer-
ative and DBSCAN. Error bars of one std. deviation are shown ( but are sometimes too small to be
visible) for local search methods for which ARI is plotted as the average over 100 trials with random
initialization.

to show that a fundamental generative model lies behind
BBC (Section 8). Furthermore, figure 4(a) and (b) show
that Mixture-6 has no clear performance advantage over
Soft BBC. Also, Mixture-6 does not conform to the form
required to incorporate Pressurization and does not cor-
respond to any known “hard” model for Bregman diver-
gences, and a hard model is essential to scale to higher di-
mensional datasets.

Pressurization with (Hard) BBC: As predicted, both
BBC and Soft BBC without Pressurization tend to be a lot
more sensitive to initialization, and BBC-Press performs al-
most as well as Soft BBC-Press on the Gauss-2 and Gauss-
10 datasets giving ARI≈ 1 for coverages of up to 40%. On
the Gauss-40 dataset, BBC-Press continues to give an ARI
≈ 1 for up to 40% coverage. In contrast, we were unable to
run Soft BBC-Press for Gauss-40 dataset because of severe
rounding errors. These results are impressive given that the
ARI was obtained as averages of multiple runs with random
seeding. In Figure 5(f), for lower coverages, BBC-Press
gives significantly lower cost (APD) as compared to both
BBC and Bregman Hard, which also used a similar cost
function. The improvement against labeled data using BBC
Press as compared to BBC is also dramatic for both Gasch
Array and Lee, showing that Pressurization also works well
for clustering high dimensional gene experiments (Figure

5(a)) or genes (5 (d)). Note that the error bars were plotted
on all the local search algorithms, but are often too small to
be visible.

Comparison with other types of Algorithms: On the
Gaussian datasets (Figure 4(d) to (f)), and on the two gene-
expression datasets (Figure 5(b) and (e)), DBSCAN, Sin-
gle Link Agglomerative and Bregman Hard Clustering all
perform much worse than BBC-Press in general, and espe-
cially when clustering a part of the data. These results are
based on evaluation using labels not used for clustering; us-
ing ARI on Gaussians (Figure 4(d) to (f)) and Gasch Array
(Figure 5(b)) and using Overlap Lift on Lee (Figure 5(e)),
and are therefore independent of the clustering methodol-
ogy. Figure 5(e) shows that (1) BBC-Press not only beats
other methods by a wide margin but also shows high en-
richments of links for low coverages (over 6 times for 5
% coverage), and (2) Single Link Agglomerative clustering
does not work well for clustering genes and gives results
not much better than random. On all datasets, Single Link
tends to perform the worst; one explanation might be its
inability to handle noisy data. In fact, for some situations
(Figure 4(d) to (f)), DBSCAN and Single Link Agglomera-
tive give slightly worse than random performance resulting
in ARI values that are slightly below 0. The performance
difference between our method (BBC-Press) and the other
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Figure 5. Evaluation of BBC-Press on gene-expression data u sing ARI for Gasch Array, and Overlap
Lift and internal cost (APD) for Lee, as compared to BBC, Breg man Hard Clustering, Single Link Ag-
glomerative, and DBSCAN. Local search results were average d over 20 trials and the corresponding
one std. dev. error-bars are plotted that are sometimes too s mall to be visible. For (c), “Min 20”
models were obtained by picking the solution with the lowest cost (APD) in 20 random seeded trials,
and then picking the mean of repeating the “Min 20” model also 20 times.

three methods is quite significant on all the five datasets,
given the small error bars. Additionally, if we were to pick
the minimum-cost solution out of multiple trials for the lo-
cal search methods, the differences in the performance be-
tween BBC-Press vs. DBSCAN and Single Link becomes
even more substantial, e.g. Figure 5, (b) vs. (c) for Gasch
Array.

Selecting size and number of dense clusters: In BBC-
Press,s controls the number of data points in dense clus-
ters. The dense clusters were invariably very pure when
using BBC-Press, with near-perfect clusters on the Gaus-
sian data fors of up to 40% ofn, while on the Gasch Array
dataset the performance peaks at a coverage of around 0.3
but shows a general decline after that. The rapid increase
in cluster quality with decreasings is more pronounced in
BBC-Press than in the other methods, and shows that on
these datasets, dense regions are indeed highly correlated
with the class labels; the confirmation of this phenomena is
tantalizing considering the fact that the clustering process
was completely unsupervised. In practice, selecting dense
clusters with BBC-Press requires choosing an appropriates
andk. If small amounts of labeled data is available, the best
k can be estimated for a fixeds using an approach such as
PAC-MDL [1], while a reasonables can be picked by ap-

plying BBC-Press on a range ofs and picking the “knee”
(e.g. Figures 4(a),(b),(c) and 5(c) show a sudden decline in
ARI nears = 0.4 × n). Alternatively, in many problemsk
can be an input, whiles simply has to be a small threshold
(e.g. for finding a small number of relevant web documents,
or a small number of relevant genes (Figure 5(e)).

Visual Verification : Although the results based on per-
formance measures show the effectiveness of our method,
visual verification serves as another independent validation
that the clusters are not only statistically significant butalso
useful in practice. For the Gauss-2 dataset, it is easy to ver-
ify the quality of the clusters visually (Figure 3). For the
Gasch Array clustering, most clusters were generally very
pure using BBC-Press for lower coverages. For example,
when only 70 out of 173 experiments are clustered by re-
peating BBC-Press 20 times and picking the lowest cost so-
lution, the average ARI is around 0.6 over 12 classes. Some
clusters are even purer, for example, one of the clusters con-
tained 12 out of 13 points belonging to the class “YPD”,
while there are 22 experiments of type YPD. This gives us
an accuracy of 92.31% for a coverage of 0.591 when 40
% of the data was clustered into 12 clusters. Similarly, for
the Lee dataset, we verified a high purity cluster using Fun-
Spec; 10 out of 14 genes in one of the clusters belonged



to the functional category “cytoplasmic and nuclear degra-
dation” with a p-value of< 10−14, the probability of this
cluster belonging into to the category by random chance.
Many other gene clusters on the Lee dataset also had low
p-values for some of the categories recovered by FunSpec.

10 Concluding Remarks
Empirical results show that BBC-Press outperforms

other potential alternatives by a large margin and gives good
results on a variety of problems involving low to very high-
dimensional feature spaces. BBC-Press can be seen as a
powerful extension of One Class Clustering to a multi-class
setting where the goal is to find dense regions in the data.
Our method extends the notion of “density-based cluster-
ing” to a large class of divergence measures, and is per-
haps the first that uses a local search/parametric approach.
The low time and space complexity of the local search ap-
proach, coupled with the robustness provided by Pressuriza-
tion, makes it possible to find multiple dense regions on ex-
tremely large and high-dimensional datasets, thus opening
density-based clustering to much larger problems. Breg-
man Bubble Clustering can also be thought of as a con-
ceptual bridge between partitional clustering algorithmsand
the problem of One Class Clustering. The Soft BBC model
shows that BBC arises out of a more fundamental model
involving a mixture of exponentials and a uniform back-
ground, and explains why BBC performs better than Breg-
man Clustering by incorporating a model for the “noisy”
background. The extension of BBC to Pearson Correlation
(Pearson Distance) makes it applicable to a variety of bio-
logical datasets where finding small, dense clusters is criti-
cal.
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