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Abstract ering small, multiple clusters formed from a small subset of
genes that show strongly correlated expression patferns
In traditional clustering, every data point is assigned to Other types of biological data that share similar propertie
at least one cluster. On the other extreme, One Class Clus-include protein mass spectroscopy and phylogenetic profile
tering algorithms proposed recently identify a single dens data.
cluster and consider the rest of the data as irrelevant. How-  For such situations, we would like to design clustering
ever, in many problems, the relevant data forms multiple algorithms that are (1) scalable, (2) can cluster only & vari
natural clusters. In this paper, we introduce the notion of able fraction of the whole dataset, (3) find multiple cluster
Bregman bubbles and propose Bregman Bubble Clusteringand (4) can work with a wide variety of distance measures.
(BBC) that seeksg: dense Bregman bubbles in the data. Existing density-based methods for finding dense clusters
We also present a corresponding generative model, Softsuch as DBSCAN [5] are not suitable for many such situ-
BBC, and show several connections with Bregman Cluster-ations because of implicit metric assumptions, and are not
ing, and with a One Class Clustering algorithm. Empiri- scalable to very large problems since they either require an
cal results on various datasets show the effectivenessrof ouin-memoryO(n?) distance matrix, or an efficient index that
method. usually does not exist for high-dimensional datasets. Re-
cently introduced One Class Clustering methods such as
OC-IB [3] and BBOCC [8] use local search that are much
1 Introduction more scalable and genefabut can only find a single dense

cluster.
Many unsupervised learning problems involve summa-

rizing the data using a small number of parameters. Algo-
rithms such as K-Means partition the data iktalusters
directly for a giverk, while other methods give a hierarchy  Thjs paper substantially generalizes the single-cluster
of clusters. However, in many real-world problems, only & gpproach of BBOCC, and consists of three major ex-
subset can be summarized well, while the rest of the dataiensjons/enhancements that lead to a robust and scalable

cases only a portion of the data, containing multiple natu- cgntributions are as follows:

ral groupings, is relevant. These include: (1) Market-lask
data, where only a subset of customers show coherent be- 1. \we present a generalization of BBOCC called Breg-

2 Contributions

havior. (2) Many web-mining applications where recover- man Bubble Clustering (BBC) that can simultane-
ing the most relevant items of key categories is more im- ously find k dense clusters. BBC with a time and
portant than obtaining an exhaustive list. (3) Many types space complexity of)(nd) (for a dataset with, data

of bioinformatics datasets. For example, gene-expression  points ind dimensions) for each iteration, is scalable
datasets measure expression level of genes compared to a
control across a few thousand genes. The experiments typ|- 1Ofter1.SUCh clusters map to biological processes that amvied in
cally cover only a specific “theme” such as stress-response e SPecific context, for example stress. .

.. Both methods useéBregman divergencesa large class of diver-
and therefore only a few genes related to the Cond't'onsgence measures that includes Squared Euclidean distasicdivisrgence,

show good clustering. Biologists are interested in recov- ltakura-Saito distance and Mahalanobis distance.




to much larger and higher-dimensional datasets thanthat are good for finding large-scale structures, or corre-
existing density-based methods. It also extends Eu-spondingly, for finding a small number of outliers. Cram-

clidean distance centric density-based clustering to amer and Chechik [3] explain why these approaches are not
large class of popular divergences known as Bregmansuitable when the goal is to find locally dense regions. Our

divergences. approach is similar to that of [8] and [3], with the addi-
_ _ tional property that we can find multiple dense regions.
2. We present an extension to BBC callBdessuriza- In the context of clustering microarray data, discovering

tion that substantially improves the quality of the local overlapping gene clusters is popular since many genes par-
search and overcomes local minima while preserving ticipate in multiple biological processes. Gene Shavirg [9
the scalability of the local search approach. The re- yses PCA to find a small subset of genes that show strong
sulting clustering is extremely robust and shows very expression change compared to the control sample, and al-
low sensitivity to initialization. lows them to be in multiple clusters.

3. We develop a generative (soft) model consisting of a4 Bregman Bubble Clustering (BBC)
mixture ofk exponentials and a uniform “background”
distribution that leads to several insights into the prob- 4
lem of finding dense clusters using Bregman diver-
gences. BBC and many existing clustering algorithms  Bregman divergenceform a family of distance mea-
are shown to be special cases of this model. sures, defined as follows: Leét : S — R be a strictly

convex function defined on a convex s&tC R<, such

4. We performed evaluations on a variety of datasetsthat ¢ is differentiable onint(5), the interior ofS. The
showing the effectiveness of our framework on low, Bregman divergenc®,, : S x int(S) — [0, inf) is de-
medium and very high-dimensional problems, as com- fined asDy(x,y) = #(x) — ¢(y) — (x —y, v¢(y)) where
pared to Bregman Clustering, Single Link Agglomer- ¢ is the gradient ofs. For example, for(x) =|| x ||?,
ative and DBSCAN. Dy(x,y) =|| x —y ||? which is the Squared Euclidean

Distance. Similarly, other forms af lead to other Breg-
5. An appropriate model selection strategy is discussed. man divergences such as Logistic Loss, Itakura-Saito Dis-

tance, Hinge Loss, Mahalanobis Distance and KL Diver-
Notation: Bold faced variables, e.gx represent vec-  gence [15, 2].

tors. Sets are represented by calligraphic upper-casa-alph
bets such ag&” and are enumerated &s; }_, wherex; are 4.2 Cost Function
the individual elements|X| represents the size of sat

.1 Bregman Divergences

Capital letters such aX are random variablesR andR¢ Let X = {x}*, C C C R be the set of data points.
represent the domain of real numbers antidimensional  LetG C X represent a non-exhaustive clustering consisting
vector space respectively. of k cIusters,{Cj}g?:1 with X\ G points that are “don’t care”,

i.e., they do not belong to any cluster. For a given Bregman
DivergenceD,(x,y) — [0,00), and a set of cluster rep-
3 Related Work resentativeqc;}s_, € R for the k clusters in clustering

A variety of density-based methods are based on the ided/ = {Cj_}f:l_, we define the cosp as the average distance
of local density estimation to cluster a part of the data. of all points inG from their assigned cluster representative:
These approaches also have the ability to find arbitrary

shaped clusters. DBSCAN [5] is a popular method in the TR IG5
database community for clustering and indexing 2-D and 3- Q(3, {Cj};-“:l) = 7l Z Z Dy(xi,¢c5), (1)
D datasets. Jiang et al. [11] applied density based clasgteri j=114:x;€C;

to gene-expression data.

A One Class Clustering algorithfhcalled OC-IB was 4.3 Problem Definition
proposed [3] that uses the notion of a Bregmanian ball to , , )
find a single dense region using an iterative relocation al-  GVen's, k and D, as inputs, where out of n points
gorithm. Gupta and Ghosh [8] described an improved local oM A are to be clustered into a clustering C
search called BBOCC, and provide performance guarante¢?Onsisting of clusters, where < k < n andk < s <n,
using an enumeration-based seeding. Earlier approaches t4€ define the clustering problem as:

One Class Clustering [18, 17] used convex cost functions o ] o
Definition 1: Find the smallest cosf consisting ofk

3Also known as One Class Classification. clusters inX, such thafg| = s.




4.4 Bregman Bubbles Algorithm 1 BBC-S

Input: SetX = {x}*, C C C R¢, Bregman divergenc®,,
no. of clusters, desired clustering size

A Bregmanian bal[3] By(r, c) with radiusr and cen-

troid c defines a volume ifk? such that all points where Output: PartitioningG* containingk clustergC, }5_,, and the
Dy(x,c) < r are enclosed by the ball. Given a sét= corresponding: cluster representatives; }5_; .
{x;}"_, of n points inR%, the cost of the ball is defined as  Method:
the averagé 4 (x, c) of all points enclosed by it. if {c;}}—, = @ then
Given a set of cluster representatives, and a fixedt 50 Initialize cluster representative$e; }j_, € C
can be shown that the clustering that minimizgsonsists end if

I G e G5 0 — e 1 — s
of: (1) the assignment phase, where each point is assigned 9 = ?’ G =g =005gp = 00
to the nearest cluster representative, and (2) pickingtpoin re?;ai ltondo

closest to their representatives first untiloints are picked. i

A . ) dT lab;) = mln Dy (xi,c
Letr,,q. represent the distance of the lagt) picked point en[d for 1= =1(Do (61, 5))

from its cluster representative. [val,idz] = sort(d™™)

These clusters can be viewediaBregman bubblesuch ¢ =0;5° =0, {C;}}=, = @
that: (1) they are either pure Bregmanian balls of radius while (s° < s) do
7 < Trmaz OF are (2touchingbubbles that form whentwo or 15 s¢ =5+ 1;
more Bregmanian balls, each of radiys,. overlap. Two ¢ = ¢"™" +wal(s®)
Bregmanian ballsB,(c1,7) and Bg(c2,72) are said to Add X (s¢) 10 CIUSEeICyap(ida (se))
overlap wherx : (Dy(x,c1) < 1) A (Dg(x,¢2) < r3). end while
At the point of contact, the touching bubbles form linear {efhim={eslim

200 ¢"=q;q=q""/s
boundarie$that result from assigning points to the closest G — GG — {CAE
cluster representative. For the part of its boundary where a for; _’1 t;k{dé}jzl
bubble does not touch any other bubble, it traces the contour z\c i
of a Bregmanian ball of radius,,.,. Therefore, bubbles N ‘C | —ixi€C;

. . . . end for
arise naturally as the optimum solution f@rfor a givens, 25: until (G' = G) A gy = g

kandD. Return{c; }_; = {¢;}i_1;6" =G

4.5 BBC-S Algorithm

For most real life problems, even for a small find-
ing the globally optimal solution for problem definition 1
would be too slow. However, a fast iterative relocation al-
(@) (b) gorithm that guarantees a local minima exisBregman
Bubble Clustering-§BBC-S, Algorithm 1) starts withk
centers and a size as input. Conceptually, it consists of
three stages: (1) the assignment phase, where each point
is assigned to the nearest cluster representative, (2npick
points closest to their representatives first unfloints are
picked, and (3) updating the centers. Itis interesting te no
that stages 1 and 3 of BBC-S are identical to the Assignment
Step and the Re-estimation step of the Bregman Hard Clus-

Figure 1 illustrates a 2-D example of Bregman bubbles tering [2], properties that lead to the unification desatibe
vs. balls. Unlike Bregmanian balls, the boundary of the in Section 8. Stages 1, 2 and 3 are repeated until there is no
Bregman bubbles can only be defined in the context of otherchange in assignment between two iterations - i.e. the al-
bubbles touching it. It is important to note that the volume gorithm converges. Algorithm 1 describes a more detailed
of the convex hull of points in one bubble could be smaller implementation of BBC-S where line number 10 represents
than that of the adjacent touching bubble, and the bubblesStage 1, lines 14 to 18 map to Stage 2, while lines 22-24
could also have different number of points assigned to them.represent Stage 3. We randomly picklata points from¥’
as the starting cluster representatives, but alternatitialr
4This can be shown to be true for all Bregman divergences [2]. ization schemes could be implemented.

Figure 1. An illustration showing (a) three
Bregman bubbles, and (b) a Bregmanian ball
(solid line), and two other possible balls (dot-
ted lines). The union of the points enclosed
by the three possible balls in (b) is the same
as the set of points enclosed by the three
bubbles.




Theorem 4.1. [2]: Let X be a random variable taking 5 Soft BBC
values in¥ = {x;};_, C C C R?followingv 5. Given

a Bregman divergenc®, : C x int(C) — [0,inf), the  °-1 Bregman Soft Clustering

problem Banerjee et al. [2] proposed a soft clustering algorithm
min B, [Dy(X, ¢)] calledBregman Soft Clusterings a mixture model consist-
cec VIOV ing of k distributions, taken from the family eégular expo-

nential distributiong(that include well known distributions
such as Gaussians, Multinomials, Poisson, etc.). They went
Proposition 4.2. Algorithm 1 is guaranteed to converge to on to prove the following important result:

a local minima for all Bregman divergences.

has a unique minimizer given ley = . = E,[X].

Theorem 5.1. There is a bijection between regular expo-
This follows from the observation that at each iteration nential families and regular Bregman divergences (equatio
the cost( either declines or stays the same. It is easy to 2). P,0)(xs) = exp(—BDy(xs, 1)) fo(xs) (@)
show that for a given set of cluster representatives, the clu  \yhereg is a convex function, and the conjugate function
ter assignment stages 1 and 2 give the lowest possible costf ), D, is the corresponding Bregman divergengg, o)
Therefore, in stages 1 and 2, the cost cannotincrease but cag the corresponding regular exponential distributionhwit
decrease. If no point's cluster assignment changes instagecymulant), 4 is a uniquely determined normalizing func-
1and 2, the cost stays the same and the algorithm convergesion that depends on the choiceddf3 is a scaling factory
Similarly the costQ) at stage 3 can either decline or stay s the expectation parametérare the natural parameters of
the same because of Theorem 4.1. By using a heap sort at¢ andx, is the sufficient statistics vector corresponding to
stage 2, each iteration of BBC-S tak€gnkd + slogn) x. For the sake of notational simplicity, for the rest of the

time making it really fast. paper, unless stated explicitly otherwise, when we mention
x we implicitly refer to the sufficient statistics af i.e. xs.
4.6 BBC-Q: Dual formulation with fixed Examples of Bregman divergences and the correspond-
Gmax ing exponential distribution that have been popular fohbot

hard and soft clustering models include squared Euclidean
Distance (Gaussian distribution), KL-divergence (muitin
mial distribution) and Itakura-Saito distance.

An alternative formulation of the BBC algorithm is pos-
sible where a threshold cogt, .. is specified rather than
the sizes:

Definition 2: Find the largestg consisting of: clusters in ..
X with cost no more thag,,qz- 5.2 Motivation for Soft BBC

We can show that this definition also results in Bregman ~ BBC can be thought of as a non-exhaustive hard clus-
bubbles as the optimal solution for a given sekafluster tering where points can belong to either one of thelus-
representatives. Definitions 1 and 2 are equivalent, simice f  ters or to a “don’t care” group. Correspondingly, Soft BBC
a giveng,,,., there exists a largestfor k bubbles, and for  can be formulated as modeling the data as a mixturke of
the same, the same solution has the same smallest possiblejistributions from the exponential family and an additibna
COStgmaz- Algorithm 1 can be easily modified to work with  “background” distribution that corresponding to the “don’
gmax DY modifying Stage (2) to stop adding points when care” points. Since we are trying to fiiddense clusters,
the cost is more tha,,... However, this seemingly minor  for a good solution the “don’t care” group should be the
modification results in two very different algorithms. For a |east dense. One way to model this low density background
fixed s as input, for iterations in sparse regions the bubbles is with a uniform distribution. The goal of building such a

expand untik points are covered. As the bubbles move into Soft BBC model is to give us deeper insights into the im-
denser regions, their radii shrink. BBC-Q does not have plicit modeling assumptions behind BBC.

this property and generally gives worse performance when

the bubble; are small. This pbservgtion led us to the id§a5_3 Model

of Pressurization discussed in Section 6. Furthermore, in _ _

many problems there is no intuitive way to determipg., Tfle Soft BBC model is defined as follows: Lt =
while users often have an idea of what fraction of their data {X:};,—,; be the dataset consisting ofi.i.d. points andk

might cluster well. This makeBefinition 1 a more natural ~ be the desired number of clusters. Det= {Yi};_, be the
choice. hidden random variables taking values from Oktoorre-

_ , _ _ sponding tok + 1 mixture components associated with the
5Theorem 4.1 is more general in that it holds for any measutefined data points where 0 Corresponds to a uniform background
on the samples. For the BBC formulation we assume all pomtsave L L . -
the same weight, but we later discuss Soft BBC in Section Guses a distribution, andl to k corresponds té& exponential mix-
probabilistic weighting. tures. The likelihood of the data points is given by:




Algorithm 2 Soft BBC

Input: Setx = {x}?_; C C C R? Bregman divergenc®,, no.
of clustersk, po, specifying the background distributiotg for
Case B.

Output: ©*, local maximizer ofL(©|X) (equation 4) wher® =
{{0;,;}5=1, a0} for case (A) and{6;, o; }—, for case (B),
soft partitioning{{p(Y: = j|x:)}¥—o}is

Method:

Initialize po, {0;,a;}¥_, with some0 < py < 1, 6; € C,
a; > 0,suchthad >’ a; = 1.
repeat
{TheE Step
for i = 1ton do
for j =0tokdo
p(Y; = j|x;) is computed from equation (7) and (8),
wherep ., 0y(x:|0;) is defined by equation 2.
end for
end for
{TheM Step
for j = 0tokdo
Updatea; using equation 10 for case A and 13 for case B.
Updatef; using equation 12.
end for
until convergence

2
i) = Z a;p(y.0)(Xil0;) + copo, [i]7

Jj=1

3)

where {a;}*_, denotes the distribution priors,
{p(p.0)(-16;)}¥_, the conditional distributions of the
k clusters, andy, denotes the probability density of the
uniform distribution. Assuming the points are sampled

i.i.d., the log-likelihood of the observed data is given by:
n k
L(©]X) = 10g() _ ajp(y.0)(xil0;) + copo)  (4)
i=1 j=1

where© denotes the priors and mixture component pa-
rameters. It is non-trivial to directly optimize the liketiod
function due to the presence of mixture components.

5.4 Soft BBC EM Algorithm

Sincepy is a uniform distribution by definitiorl, /p, de-
fines the volume of its domain. This domain should include
the convex hull ofY’, which yields an upper bound fgx.

In equation 4, keeping all other parameters constant, alowe

value ofpy will always result in a lower likelihood. For
now, we only consider the case wheaigis set to a fixed

value. Therefore, the only parameters we can optimize over

are the priorgo; }2?:0 and the exponential mixture param-

eters{6;}*_,. We consider two slightly different scenarios:
(A) whereqy is a variable parameter, and (B) whergis

a fixed value< 1. To maximize the log-likelihood func-
tion, we adopt a standard EM-based approach [14] and first
construct the negative free energy function:

Z
Z

whereP = {{p(Y; = j|x;) }iei}k_, are the current es-
timates of). It can be shown that the EM procedure with
the E andM steps alternately optimizing (P, ©) over P
and® is guaranteed to converge to a local maxifiaand
©*. Furthermore, it can be shown that a local maxima of
F(P,0) leads to a local maxima on the original likelihood
given by equation 4. Hence we will now focus on obtaining
the updates involved in tHé andM steps for the two cases.
Case (A):qy is not fixed

E-Step In this step we optimizeF(P, O) (equation 5)
over P under the constraints that t@?zo p(Y: = jlx;) =
1, [¢]}, andp(Y; = j|x;) >= 0, Vi, j. Using Lagrange mul-
tipliers {\;}7_, for the n equality constraints and taking
derivatives w.r.tp(Y; = j|x;), we obtain the update equa-
tion for re-estimating the probability of each point coming
from any of the 0 toc components, given the current model
parameters:

Yi =j1©) =1 —logp(Y; = jlxi) —

p(Yi,xi) 1ng(xlv Y |®)] (5)

p(Yi,xi) 1ng(y|xl ]

log p(x;, Ai =0 (6)

wherep(x;,Y; = j|0) is a;py,g)(x:|0;) for 1 < j < k
andagpy for j = 0. On eliminating the Lagrange multipli-
ers, we obtain:

a;p(y,0)(Xil0;)
k
> i1 AP(w.0)(Xil0;) + copo
oPo
S Py (xil0;) + copo
M-Step: In this step we optimizé”(P, ©) over® under
constraintszg?:0 aj = landa; > 0,Vj. It can be shown
that the inequality constraints are not binding. Using La-

grange multipliex for the constraint and taking derivatives
w.r.t. aj, [1]k, we obtain:

p(Yi = jlxi)* = A1<j<k (7)

J=0 (8)

=~ p(Y; = j|xi) .
> EEI) o ©
=1
and on eliminating, we obtain:
« o p(Yi=glxi)
oy = 2= PO =) )

J n
Note that the update equation for the background distri-

bution prior, ag, turns out to be the same as that for the
exponential mixture distributions; to . The optimal



mixture component parameter estimation can be obtainedsmall, only a few close neighbors get assigned, thereby de-
by setting derivatives oved; }7_, to 0 as follows: creasing the mobility of the representatives at each itera-
n tion. This makes it difficult for BBC-S to find small, dense
Zﬁ(Yi = JIx1) Vo, p(p,0)(xi]0;) = 0 (12) regions far from initial seed locations. On the other hand,
i=1 starting with a large would be contrary to the goal of find-
This results in the update equation for the exponential ing smalll densc_e regions. This problem is even more severe
distribution mixtures{o};?:l as the weighted average of with BBC-Q, since the bubbles cannot expand automati-

x [2]: cally in sparser regions.
Is there a way to improve upon the ability of BBC-S to
iy p(Yi = jlxi)x; “expand” in a sparse region, while still optimizing cluster
0; = =5 - (12) ; O en Ty )
J S (Y = glxi) ing over small, dense regions? We start by defining a con

o cept calledBregman bubble pressutbdat is analogous to
Case (B):ay is fixed . . the pressure around air bubbles in a body of water on Earth.
E-Step Since keepingy, fixed does not result in any  \when air-bubbles rise in a column of water, the outside

A. _ - _ S, we can imagine this external pressure as being inversely
M-Step: Keepingay constant m_od|11‘|es the constraints proportional to the input threshold a larger threshold cor-
on the priors so that we now requibe;_, a; = 1 — o responds to a smaller external pressure, leading to larger

anda; > 0,Vj. As before, the inequality constraints are pybpbles.

not binding and by using a Lagrange multiplier and taking  BBC-Press We propose an algorithmic enhancement

derivatives, we arrive at: to BBC calledPressurizatiorthat is designed to improve
S (Y = jlxi) (13) the quality of the local minima discovered. We start the

Zl?_ S 5(Y; = jlxi) first |terat|on_ of BBC-S w_lth a small enough pressure to
g=1 £l AT ’ cause all points to be assigned to some cluster, and slowly

The optimal mixture component parameters are obtainedincrease the pressure after each iteration. An additional

a; = (1 —ao)

exactly as in case A. parametery € [0,1) that controls the rate of pressure
Choosing an appropriatepy: For case (A) of the Soft  increase is used as an exponential decay parameter, and

BBC algorithm, one can show that the parametgiis es-  s; = s+ [(n—s)y7~! | is used instead of for the j'" iter-
sentially a function op given by the relation (from thé/ ation. Convergence is tested only after— s)77~* < 1. A

step): somewhat slower but more robust alternative involves run-

ning BBC-S to full convergence after each recomputation of

1 QoPo sj, and yields slightly better empirical results. Pressuriza
%o =~ Z (14) tion can also be implemented for BBC-Q by varyifg,.

k
i=1 2j=1 43P (w.) (xil0;) + aopo instead ofs.

Soft BBC-Press Pressurization can also be extended to
Soft BBC for Case B whemy is not updated. Wheng
andp, are large (close to 1), only a small amount of data is
“explained” by thek exponential mixtures. This may lead to
bad local minima problems similar to (although less severe
than) the one faced in BBC. Therefore, we propose a soft
d version of Pressurization that takes a decay parameter

[0, 1) and runs Soft BBC (Case B) multiple times as follows:
(1) start with some initial model paramete[n%}};?:1 and
run Soft BBC to convergence. (2) at triaketag to o, =
ao(1 — 77~1), and forr > 1 set current model parameters
) _ o to the output of last trial{67}5_, = {67~ '}*_,. Repeat
6 Improving local search with Pressurization  step (2) untila, — g is smaller thare, and then perform a
final run witha,. = ag.

Using this relation, for a given and a set of mixture
component parameters, it is possible to solverfar But
one cannot do this in the EM framework since the best value
for py is always the highest possible one. However this rela-
tionship allows us to calculate the valueggffor the initial
seed parameters. A fast approximationpgfcan be esti-
mated by (1) performing the first E step (equations 7 an
8), then (2) computing thg!,, ., = max"_,(p(Y; = j|x;))
for eachx;, and then (3) picking, as thes'” largest value
inpt ..[i]7 wheres = [agn].

BBC-S is able to find locally dense regions because of
its ability to explicitly ignore large amounts of databy eon 7 Extension to Pearson Distance
sidering only points close to the cluster representatiges f
cluster membership. During each iteration, the bubble rep- Pearson Correlatior{P) is a popular similarity measure
resentatives move to a lower cost nearby location. But whenfor clustering gene-expression and other biological adsas
the dense bubbles are naturally small, i.e. threshkalsl Pearson Distancdr) between two data pointsandy is



defined asl — P(x,y), and is also equal to the Squared
Euclidean Distance between z-scofest and z-scored.
When Dy is replaced byDp in Equation 1, we refer t6)
asAverage Pearson Distan@®PD). The following directly
follows from a proof given by Dhillon and Modha [4]:

Proposition 7.1. For any clusterC; in G, the cluster
representativec;* that minimizes contribution to APD
by that cluster is equal to the mean vector of the
points inC; projected onto a sphere of unit radius, i.e.

Cj argmin(APD(Cj,c;)) = i where C}"
<
IC:|

e
1
|Cj| Zi:xie

Therefore, whenD,, is replaced withDp for BBC-S
(Algorithm 1), the optimal representative for each cluster

*

¢, Zscore(X;).

is computed by averaging the z-scored points rather than

the original points, and then again z-scoring the resultant
mean. This minor modification makes BBC-S applicable to

Dp guaranteeing a local minima in terms of APD cbst

8 A unified framework

8.1 Unifying Soft BBC & BBC

We are now ready to look at how the generative model
Soft BBC relates to the BBC problem, specifically the for-
mulation where the number of points classified into the
real clusters (excluding the “don’t-care” cluster) is fixed
(Definition 1, Section 4.3), and show the following:

Proposition 8.1. BBC optimizes a lower bound on the log-
likelihood objective function of Soft BBC.

Proof. Let us consider the cost function:

L2(®|X) = ZEpT(Yi:ﬂxi,@)[logp(xiaY; = j|97)]
=1

(15)
wherep! (Y; = j|x;,0) = 1 for j = argmaxp(x;,Y; =
0<j<k
j16;) and 0 otherwise, which is essentially equivalent to the
posterior class probabilities based on the hard assigrsment
used in BBC. It can be shown [12] that for a fixed set of
mixture parameter® = {6}%_,, and L(©|X) being the
log-likelihood objective of Soft BBC (Equation 4):

Ly(0]X) < L(©]X) (16)

This result is independent of the choice of priors
{ozj}é?zo. Note that whileL(-) depends upon the priors
while Lo(-) does not. For our choice of mixture compo-

M=

L2(O]X) = Z

Jj=1

BDy(xi,05) +
A

log p? (x;) — (17)

VYi=j

i

log(po)[iliy
0

=

If the number of points assigned to the uniform distribu-
tion is fixed ton — s, s points are assigned to tiheexponen-
tial distributions, ang, and 3 are fixed, we can see from
Equation 17 that:

Proposition 8.2. MaximizingL,(©|X) is identical to min-
imizing the BBC objective functiap (Equation 1).

From Proposition 8.2 and Equation 16 we have the proof

for Proposition 8.1. O

Proposition 8.3. BBC with a fixeds as input (Definition 1,
Section 4.3) is a special case of Soft BBC with fixgd

Proof. Let us consider an extreme case whith- oo for

Soft BBC (see Equation 4 and 2). Then the class poste-
rior probabilities in Soft BBC converge to hard assignment
(BBC) ensuring thal.(6|X) = L,(©]X) in Equation 17.
Since BBC is equivalent to optimizing.(0|X) (Proposi-
tion 8.2), we can also view BBC with fixedas input as a
special case of Soft BBC with fixed,. O

8.2 Other unifications

The following other interesting unifications can also be
shown easily for our framework:

1. BBC is a special case of BBC-Press whes 0.

2. Bregman Bubble Clustering becomes BBOCC when

k=1.

. Soft BBC reduces to Bregman Soft Clustering when
po = 0.

4. Bregman Bubble Clustering reduces to Bregman Hard
Clustering (which is a special case of Bregman Soft
Clustering) wheny,,., = oo (for BBC-Q) or when
s = n (for BBC-S).

Figure 2 summarizes the hierarchy of algorithms de-
scending from BBC-Press and Soft BBC. We could think
of BBC as a search under “constant pressure”, and for
Bregman Hard Clustering this pressure is zero. Note that

nents, based on Equations 2 and 16, one can readily obtaifior ; = 1, Bregman Clustering is not very meaningfyl

the following form forLs(-):

60ften used in statistics, normally performed between gaiross a
dimension. Here we perform it between dimensions for eath pizint.
"The same modification works for BBC-Q also.

8For both cases A and B.

9For k = 1, Bregman Soft Clustering returns a single exponential dis-
tribution fit to the whole data while Bregman Hard Clustersimply re-
turns the mean of the whole data.
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Figure 2. Unification of various algorithms for a given Bregm an divergence Dy: (left) BBC, BBOCC
and Bregman Hard Clustering are special cases of BBC-Press. (right) Bregman Hard and Soft Clus-
tering, BBC-S, BBOCC-S and a "soft” BBOCC (consisting of one exponential and a uniform back-
ground mixture) are special cases of Soft BBC obtained as spe cific combinations of (i) whether
B — oo, (ii) whether «g is 0 (equation 3), and (iii) whether k is 1. Bregman Clustering (both hard and
soft) for k& = 1 does not result in a useful algorithm. BBOCC-S and BBOCC-Q re present BBOCC with
fixed s or ¢4 @s inputs respectively.

whereas BBC gives rise to BBOCC. In the context of find-  Table 1 describes the essential attributes of the datasets
ing dense regions in the data, BBC can be thought of as athat we report results on. The Gauss-2 dataset was gener-
conceptual bridge between the problem of one class clusterated using five 2-D Gaussians of different variances (Fig-
ing and exhaustive k class clustering. However, the defin-ure 3) and a uniform distribution. Similar datasets were
ing characteristic of BBC is its ability to find small, dense generated with five Gaussians in 10-D and 40-D to pro-
regions by modeling a small subset of the data. BBC com-duce Gauss-10 and Gauss-40 datasets. These datasets
bines the salient characteristics of both Bregman Hard-Clus are useful for verifying algorithms since the true labels
tering and BBOCC resulting in an algorithm more powerful are known exactly. Both Gasch Array [6] and Lee [13]
than either, and that works across all Bregman divergencesare yeast microarray datasets. The Gasch Array dataset
BBC-S is a natural extension of BBOCC-S following di- contains labels for experiments, and is therefore use-
rectly from a common underlying generative model, and is ful for evaluating clustering of experiments in a very
not just a heuristic; the difference in the generative model high-dimensional (6,151) space. The Lee dataset con-
is only in having a single vs. multiple exponential distribu  sists of 591 gene-expression experiments on 5,612 yeast

tions mixed with a uniform background. genes obtained from the Stanford Microarray database [7]
(http://genome-www5.stanford.edu/) and also contains a

9 Experiments Gold standard based on Gene Ontology (GO) annotations
(http://www.geneontology.org). The Gold standard con-

9.1 Datasets tains 121,406 pairwise links (out of a total of 15,744,466

gene pairs) between 5,612 genes in the Lee data that are

known to be functionally related.
Table 1. A summary of the datasets used.

Mic. stands for gene-expression data from

microarray experiments, Sim.  for artifi- 9.2 Evaluation Methodology

cial/simulated data, Sq. E. stands for Evaluation Criteria: Evaluating clustering is a chal-
Squared Euclidean, and D is the distance lenging problem since the clustering itself is unsupervise
function used for clustering. IC] is the num- and there is no direct way of identifying correspondence
ber of classes in the data. between class labels and clusters. Besides using the in-

ternal cost measur€, we also performed three different
types of evaluations based upon the type of labeled data:

gZLac;shefArray S&?Cr.ce 17;3 G il51 gp ﬂ (1) Adjusted Rand Inde¢ARI) [10], which returns 1 for a

Lee Mic. 5612 591 Dp NA perfect agreement between clusters and class labels and 0
Gauss-2 Sim. 1,298 2 Sq. E. 5 when the clustering is as bad as random assignments: (2)
Gauss-10 Sim. 2,600 10  Sq.E. 5 value We obtained p-values for individual clusters of Yeast

Gauss-40 Sim. 1,298 40 Sq. E. 5 genes usingunspechttp://funspec.med.utoronto.ca/) [16].
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Figure 3. lllustration of Gaussian Bubbles generated by Sof t BBC-Press on Gauss-2 data when vari-
ances are updated for s=750, for k£ = 7 (left), and k£ = 5 (right). % was set to 7 in the left figure to
illustrate non-linear boundaries produced in Soft BBC. Sma Il dots are points in the “don’t-care” set.

(3) Overlap Lift It is not possible to use ARI to evaluate Comparison with other methods We also compared
againstthe links in the Lee Gold standard. Instead, we com-our method with Bregman Hard Clustering, Single Link Ag-
pute statistical significance as follows: clusters of size  glomerative clustering and DBSCAN. Bregman Hard Clus-
{wj};?:l resultinl, = Zf:l wj(wj — 1)/2 links. If liye tering assigns every data point into a cluster. To be able
is the number of correct links observed then Overlap Lift to compare it meaningfully with BBC, we pickedpoints
= lirue/(frinkeale), representing how many times more closest to their respective cluster representatives. fJiiois
correct links are observed as compared to random chancegedure was also used for Single Link Agglomerative clus-
wherefiinkeq iS the fraction of gene pairs linked in the Gold  tering. For the two DBSCAN parameters, we 3éinPts
standard. to 4 as recommended by Ester et al. [5], while we searched
For all evaluations, the points in the background or the for Eps that resulted ins points in clustersk is automati-
“don’t care” cluster are excluded from the evaluation. Note cally estimated by DBSCAN while for all the other methods
that the clustering is performed in a completely unsuper- and dataseté was set tgC| (Table 1), except for the Lee
vised setting and the class labels were only used for evaluadataset (wher&| is not known) where we sétto 10. All
tion. five methods use the same (and the appropriate) distance
Evaluating Soft BBC: We tested Soft BBC with Gaus- measure; Sg. Euclidean for the Gaussian and Pearson Dis-
sians as the exponential mixture components. If the Gaustance for the gene-expression datasets respectively.
sian variances are treated as a part of the mixture parasneter
{0,}%_, (equation 3), itis possible to get clusters of variable 9.3 Results
diameters (Figure 3, right) that fit natural cluster diamete
There are eight possible variations of Soft BBC depending  Pressurization with Soft BBC: For the lower dimen-
upon whether (i}, is updated (Case A vs. B, Section 5.4), sional datasets, Soft BBC-Press, does extremely well, giv-
(i) variances are updated or not, and (iii) all cluster vari ing near-perfect results (AR¥ 1) for up to 40% coverage
ances are forced to be equal or not. We presentresults onthen Gauss-10 data and an ARI between 0.8 and 0.9 for up
Soft BBC implementation that gives the best results: updat-to 40% coverage on Gauss-2 data. We only tested the Soft
able, unequal variances with a fixad. We also compared BBC and the Mixture-6 models on Gauss-2 and Gauss-10
Soft BBC for Gaussians with an alternative model that we datasets, mainly to validate Soft BBC and Soft BBC-Press.
call Mixture-6where the uniform background distributionis  This is because, exponential mixture models in general, in-
replaced by a large, fixed variance Gaussian while the othercluding Bregman Soft Clustering, Mixture-6 and Soft BBC
k Gaussian variances are updated, apds fixed. all suffer from an inherent flaw that makes them imprac-
Hard Assignments for Soft BBC. On convergence, the tical for high dimensional datasets; there are rounding er-
points are assigned to the mixture with the largest proba-rors while estimating the mixture membership probab#itie
bility. A post-processing was performed that recompptes  (equation 7), and these rounding errors worsen exponen-
such that exactlyn — s) /n points are assigned to the “don’t tially with the dimensionality of the dat@ so much so that
care” set. A similar conversion was required for evaluating the models generally do not work well beyodd= 10.
the soft model Mixture-6. However, the main purpose of designing Soft BBC was
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Figure 4. Labeled evaluation on simulated Gaussian data of i ncreasing dimensionality using ARI:

(a), (b) and (c) demonstrate the effectiveness of Pressuriz  ation. (d), (e) and (f) show effectiveness of

BBC-Press as compared to three other methods: Bregman Hard C lustering, Single Link Agglomer-

ative and DBSCAN. Error bars of one std. deviation are shown ( but are sometimes too small to be

visible) for local search methods for which ARI is plotted as the average over 100 trials with random

initialization.
to show that a fundamental generative model lies behind5(a)) or genes (5 (d)). Note that the error bars were plotted
BBC (Section 8). Furthermore, figure 4(a) and (b) show on all the local search algorithms, but are often too small to
that Mixture-6 has no clear performance advantage overbe visible.
Soft BBC. Also, Mixture-6 does not conform to the form Comparison with other types of Algorithms: On the
required to incorporate Pressurization and does not cor-Gaussian datasets (Figure 4(d) to (f)), and on the two gene-
respond to any known “hard” model for Bregman diver- expression datasets (Figure 5(b) and (e)), DBSCAN, Sin-
gences, and a hard model is essential to scale to higher digle Link Agglomerative and Bregman Hard Clustering all
mensional datasets. perform much worse than BBC-Press in general, and espe-

Pressurization with (Hard) BBC: As predicted, both  cially when clustering a part of the data. These results are
BBC and Soft BBC without Pressurization tend to be a lot based on evaluation using labels not used for clusterirg; us
more sensitive to initialization, and BBC-Press perforfnsa ing ARl on Gaussians (Figure 4(d) to (f)) and Gasch Array
most as well as Soft BBC-Press on the Gauss-2 and GaussFigure 5(b)) and using Overlap Lift on Lee (Figure 5(e)),
10 datasets giving ARk 1 for coverages of up to 40%. On and are therefore independent of the clustering methodol-
the Gauss-40 dataset, BBC-Press continues to give an ARbgy. Figure 5(e) shows that (1) BBC-Press not only beats
~ 1 for up to 40% coverage. In contrast, we were unable to other methods by a wide margin but also shows high en-
run Soft BBC-Press for Gauss-40 dataset because of severachments of links for low coverages (over 6 times for 5
rounding errors. These results are impressive given teat th % coverage), and (2) Single Link Agglomerative clustering
ARl was obtained as averages of multiple runs with random does not work well for clustering genes and gives results
seeding. In Figure 5(f), for lower coverages, BBC-Press not much better than random. On all datasets, Single Link
gives significantly lower cost4{PD) as compared to both  tends to perform the worst; one explanation might be its
BBC and Bregman Hard, which also used a similar cost inability to handle noisy data. In fact, for some situations
function. The improvement against labeled data using BBC (Figure 4(d) to (f)), DBSCAN and Single Link Agglomera-
Press as compared to BBC is also dramatic for both Gaschtive give slightly worse than random performance resulting
Array and Lee, showing that Pressurization also works well in ARI values that are slightly below 0. The performance
for clustering high dimensional gene experiments (Figure difference between our method (BBC-Press) and the other
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Figure 5. Evaluation of BBC-Press on gene-expression data u sing ARI for Gasch Array, and Overlap

Lift and internal cost (APD) for Lee, as compared to BBC, Breg man Hard Clustering, Single Link Ag-

glomerative, and DBSCAN. Local search results were average  d over 20 trials and the corresponding

one std. dev. error-bars are plotted that are sometimes too s mall to be visible. For (c), “Min 20"

models were obtained by picking the solution with the lowest cost (APD) in 20 random seeded trials,

and then picking the mean of repeating the “Min 20" model also 20 times.

three methods is quite significant on all the five datasets,plying BBC-Press on a range efand picking the “knee”
given the small error bars. Additionally, if we were to pick (e.g. Figures 4(a),(b),(c) and 5(c) show a sudden decline in
the minimum-cost solution out of multiple trials for the lo- ARI nears = 0.4 x n). Alternatively, in many problems

cal search methods, the differences in the performance beean be an input, while simply has to be a small threshold
tween BBC-Press vs. DBSCAN and Single Link becomes (e.g. for finding a small number of relevant web documents,
even more substantial, e.g. Figure 5, (b) vs. (c) for Gaschor a small number of relevant genes (Figure 5(e)).

Array. ) e
Visual Verification: Although the results based on per-

Selecting size and number of dense clustertn BBC- formance measures show the effectiveness of our method,
Press,s controls the number of data points in dense clus- visual verification serves as another independent vatidati
ters. The dense clusters were invariably very pure whenthat the clusters are not only statistically significantdigb
using BBC-Press, with near-perfect clusters on the Gaus-useful in practice. For the Gauss-2 dataset, it is easy to ver
sian data fos of up to 40% ofn, while on the Gasch Array ify the quality of the clusters visually (Figure 3). For the
dataset the performance peaks at a coverage of around 0.@asch Array clustering, most clusters were generally very
but shows a general decline after that. The rapid increasepure using BBC-Press for lower coverages. For example,
in cluster quality with decreasingis more pronounced in  when only 70 out of 173 experiments are clustered by re-
BBC-Press than in the other methods, and shows that orpeating BBC-Press 20 times and picking the lowest cost so-
these datasets, dense regions are indeed highly correlateldition, the average ARl is around 0.6 over 12 classes. Some
with the class labels; the confirmation of this phenomena is clusters are even purer, for example, one of the clusters con
tantalizing considering the fact that the clustering pesce tained 12 out of 13 points belonging to the class “YPD”,
was completely unsupervised. In practice, selecting densewhile there are 22 experiments of type YPD. This gives us
clusters with BBC-Press requires choosing an approptiate an accuracy of 92.31% for a coverage of 0.591 when 40
andk. If small amounts of labeled data is available, the best % of the data was clustered into 12 clusters. Similarly, for
k can be estimated for a fixedusing an approach such as the Lee dataset, we verified a high purity cluster using Fun-
PAC-MDL [1], while a reasonable can be picked by ap- Spec; 10 out of 14 genes in one of the clusters belonged



to the functional category “cytoplasmic and nuclear degra- [6] Gasch A. P. et al. Genomic expression programs in the re-

dation” with a p-value ok 10~4, the probability of this

cluster belonging into to the category by random chance.
Many other gene clusters on the Lee dataset also had low [7]
p-values for some of the categories recovered by FunSpec.

10 Concluding Remarks

Empirical results show that BBC-Press outperforms
other potential alternatives by a large margin and giveslgoo
results on a variety of problems involving low to very high-
dimensional feature spaces. BBC-Press can be seen as HO]
powerful extension of One Class Clustering to a multi-class
setting where the goal is to find dense regions in the data.[11]
Our method extends the notion of “density-based cluster-
ing” to a large class of divergence measures, and is per-
haps the first that uses a local search/parametric approach[.lz]
The low time and space complexity of the local search ap-
proach, coupled with the robustness provided by Pressuriza
tion, makes it possible to find multiple dense regions on ex-
tremely large and high-dimensional datasets, thus opening
density-based clustering to much larger problems. Breg- [13]
man Bubble Clustering can also be thought of as a con-

ceptual bridge between partitional clustering algorittamg

the problem of One Class Clustering. The Soft BBC model [14]
shows that BBC arises out of a more fundamental model
involving a mixture of exponentials and a uniform back-
ground, and explains why BBC performs better than Breg-
man Clustering by incorporating a model for the “noisy”
background. The extension of BBC to Pearson Correlation
(Pearson Distance) makes it applicable to a variety of bio- [16]
logical datasets where finding small, dense clusters is crit

cal.
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