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ABSTRACT
In online advertising, response prediction is the problem of esti-
mating the probability that an advertisement is clicked when dis-
played on a content publisher’s webpage. In this paper, we show
how response prediction can be viewed as a problem of matrix
completion, and propose to solve it using matrix factorization tech-
niques from collaborative filtering (CF). We point out the two cru-
cial differences between standard CF problems and response pre-
diction, namely the requirement of predicting probabilities rather
than scores, and the issue of confidence in matrix entries. We ad-
dress these issues using a matrix factorization analogue of logis-
tic regression, and by applying a principled confidence-weighting
scheme to its objective. We show how this factorization can be
seamlessly combined with explicit features or side-information for
pages and ads, which let us combine the benefits of both approaches.
Finally, we combat the extreme sparsity of response prediction data
by incorporating hierarchical information about the pages and ads
into our factorization model. Experiments on three very large real-
world datasets show that our model outperforms current state-of-
the-art methods for response prediction.
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1. THERESPONSE PREDICTIONPROBLEM
Online advertising involves the interaction between two entities:

publishers (e.g. AOL, Yahoo), who own and manage webpages,
and advertisers (e.g. Pepsi, Nike), who have products that they wish
to market to users of the publishers’ webpages via ads. A funda-
mental monetary paradigm in this form of advertising is pay-per-
click. Here, each advertiser places a bid for their ad to be placed
on a publisher’s webpage, and pays the bid amount to the publisher
only if the ad was selected to be displayed (referred to as a view)
and subsequently clicked by a user. Amongst many competing ads,
the publisher chooses to display the ad with the highest expected
revenue, which is the ad’s bid amount multiplied by the probabil-
ity that it is clicked. This probability is known as the clickthrough
rate (CTR) of an ad, and its reliable estimation is crucial for a pub-
lisher to maximize revenue. The task of estimating this probability
is known as response prediction, or CTR estimation.
Response prediction is a challenging problem for at least two rea-

sons. First, the majority of ads have limited or no past history on
a particular publisher page. This sparsity obviously hinders sim-
ple CTR estimation, and necessitates a principled way to exploit
correlations in the data. Second, as most ads are clicked very infre-
quently, we have to predict the probability of a rare event, which
is very challenging. In both situations, it is beneficial to exploit
known hierarchical information about pages and ads. This refers
to a pre-defined hierarchy for both entities, where for example, the
set of all ads is partitioned according to the campaigns they belong
to, the campaigns are in turn divided according to the advertisers
running the campaigns and so on. (See Figure 1 for an example.)
These hierarchies encode correlations between the CTRs – for ex-
ample, two ads shown as part of the same campaign will have sim-
ilar CTRs – and so are very useful in deriving reliable probability
estimates when historical data is limited.
Existing methods for response prediction are based either on

training standard classifiers on explicit features for pages and ads,
or on statistical smoothening over baseline estimates. In this paper,
we propose a novel approach to the problem based on collabora-
tive filtering (CF). This is a technique used in recommender sys-
tems, where the input is a matrix of user-by-item preference scores,
where most entries are missing. Each non-missing entry is a nu-
meric score telling us how much a user likes an item. The desired
output is a set of predicted scores for the missing entries, so that
we can recommend for each user some new items that she might
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like. We show the natural connection between this problem and re-
sponse prediction, where we think of pages as users, ads as items,
and the entries of the matrix as the historical CTRs for (page, ad)
pairs, while pointing out two differences between the problems: (i)
response prediction requires the predicted CTRs to be meaning-
ful probabilities, and (ii) our goal in response prediction is to not
only fill-in the missing CTRs in this matrix, but also smoothen the
CTRs for which there is limited historical data. This requires re-
specting the confidence in the matrix entries. Further, from a mod-
elling perspective, the aforementioned problem of data sparsity in
response prediction necessitates a careful mechanism for exploiting
all available information. To address these differences, we begin by
showing how a matrix factorization model can meet the basic re-
quirements for response prediction, using simple extensions that
have been studied in the CF literature. This extended factorization
model is capable of incorporating explicit page and ad features,
known in the CF literature as side-information. We give a simple
iterative scheme by which the side-information can be used to re-
fine our model’s performance. We then show how the factorization
model can be made to exploit hierarchical information about pages
and ads. This novel extension allows the model to mitigate the
challenge of data sparsity, and constitutes the main contribution of
the paper. Our resulting model may be optimized using stochastic
gradient descent, allowing it to scale to datasets with several billion
matrix entries. Experiments on three real-world datasets show that
our model improves on the performance of state-of-the-art response
prediction models, and demonstrates the model’s scalability.

2. BACKGROUND AND RELATED WORK
There are three main relevant areas of research for this paper:

response prediction, hierarchical constraints and collaborative fil-
tering. Before proceeding, we fix the notation used in this paper.

2.1 Notation and terminology
Given a matrix X ∈ Rm×n, we denote the (i, j)th entry of the

matrix by Xij and the jth column of the matrix by Xj . We call
each pair (i, j) a dyad. We denote the Frobenius norm of a matrix
by ||X||F :=

√∑
i ||Xi||22. IfX has entries that are unobserved or

missing, we denote these by “?”. We letO = {(i, j) : Xij #= “?′′}
be the set of observed entries for the matrixX .
Response prediction. We are interested in predicting probabil-

ities given the interaction between (web)pages P = {1, . . . ,m}
and ads A = {1, . . . , n}, where each entity is represented by a
unique identifier. Given a page i and an ad j, we would like to
predict Pij= Pr[Click|i, j]. The available historical data consists
of matrices C, V ∈ Zm×n, representing the number of clicks and
views respectively that have been observed for particular (page, ad)
pairs. Specifically, Vij tells us how many times ad j was shown on
publisher’s ith page, and Cij says how many times it was clicked
once shown. By definition, we must have Cij ≤ Vij .
Hierarchies. We use HX to denote a hierarchy over objects in

the setX. A hierarchy is a directed graph (V, E) with a level based
structure: there is an injective function !X : V →{ 1, . . . , DX},
whereDX is the depth of the hierarchy, such that a node u ∈ V can
only have edges to nodes v ∈ V with !X(v) = !X(u)+1. Further,
every node in levels {1, . . . , DX − 1} has at least one outgoing
edge. The leaf nodes in level DX correspond to the elements of
X. Finally, we constrain that there is only one node v ∈ V with
!X(v) = 1, which we call the root node. Figure 1 represents an
example of such a hierarchy over ads, where DX = 4 . We let
|HX | = |V| denote the number of nodes in the hierarchy HX .
We refer to the set of parents for a node u by Par(u). A hierarchy

is a tree if and only if every non-root node has exactly one parent.

Any two nodes u, u′ with a common parent are called siblings. We
refer to the set of paths from the root node to a node u by Path(u).

2.2 Response prediction
The introduction described the basic monetary paradigm in com-

putational advertising, where an advertiser pays a publisher for ev-
ery user click. Response prediction was cast as the problem of es-
timating the fundamental quantity of interest in this setting, which
is the probability of an ad being clicked. Recently, new response
types have been adopted by advertisers, where the payout happens
not when a user clicks on an ad, but only when she performs an
action (called a conversion) after the ad is displayed. The action
could be buying a product, filling out a form, et cetera. Accurate
estimation of the probability for all response types is crucial to se-
lect the ad with highest expected revenue. “Response prediction” is
therefore a blanket term that includes prediction for all three types
of user response. However, the specific type of conversion does not
change the modelling problem, and so for the rest of the paper, we
will assume we are dealing with click events for simplicity.
With this is mind, consider the problem of predicting Pij =

Pr[Click|View; i, j]. Given historical data, arguably the simplest
solution is the maximum likelihood estimate (MLE), PMLE:

PMLE
ij :=

{
Cij

Vij
if Vij #= 0

? else.
(1)

The “?” denotes that the MLE is undefined when Vij = 0, since
we have no historical data for the particular (page, ad) pair. Thus,
the MLE is unusable if Vij = 0. Similarly, if Vij #= 0 but is
small, then the MLE is very noisy: for example, if an ad has been
shown 5 times on a page and received 0 clicks, a CTR estimate of
0 is intuitively too extreme. As these two cases are the majority in
practice, we need a different estimate P̂ that smoothens the MLE
to make it more reliable. There are three properties any estimator
P̂ should satisfy: (i) it should provide estimates when Vij = 0, (ii)
it should provide smoothened estimates when Vij #= 0 but is small,
and (iii) it should output meaningful probabilities in [0, 1]. Note
however that the MLE is consistent, meaning that as Vij → ∞,
PMLE
ij → Pij . This implies that any estimator P̂ij should ideally

converge to the MLE when Vij is sufficiently large.
Existing learning methods for response prediction can be catego-

rized as feature-based or MLE-based. Feature-based methods build
prediction models based on explicit features of an ad and a page,
also known as side-information. These could include the textual
content of an ad, its placement on the webpage, et cetera. Many
existing feature based methods build prediction models using the
logistic regression family [17, 8]. MLE-based methods smoothen
the raw MLE via statistical models of clicks and views, with a pop-
ular choice being the Gamma-Poisson model [5, 2].

2.3 Hierarchical constraints
Pages and ads can often be organized into pre-defined hierar-

chies. For example, the set of all ads can be categorized according
to the advertiser who made the ad. Each advertiser in turn typi-
cally instruments a series of campaigns in which to display the ads,
each with differing markets and goals. This means that there is a
tree-like structure to the ads: Root→ Advertiser→ Campaign→
Advertisement. See Figure 1 for a simple example of an ad hier-
archy. Notice that hierarchies are not necessarily trees, since an ad
may be shown as part of multiple campaigns, for example.
Hierarchical structure encodes useful prior knowledge about CTRs.

For example, the CTRs of all ads from the same campaign tend to
correlated with one another. So, if a particular (page, ad) pair has
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. . .
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!X=2

!X=3

!X=DX=4

Advertiser a

Camp 1 Camp 2 Camp c-1

Figure 1: Hierarchical structure for advertisers.

only a few views, but the siblings of the ad have many views, then
the reliability of its estimate can be increased by “borrowing” from
the siblings’ probability estimates in some principled manner. Hi-
erarchical information has been successfully used in previous work
on response prediction. [3] enforces relationships between esti-
mates for (page, ad) pairs using a Markov model based on the hi-
erarchy. The state-of-the-art LMMH model in [2] stores a separate
weight φij for each pair of nodes (i, j) in the page and ad hierar-
chies, and the click probability is modelled as a product of weights
for all pairs of nodes on the respective hierarchy paths for i and
j. The key idea here is fallback: if a (page, ad) pair (i, j) has an
insufficient number of views, then the model sets φij to 1, causing
a fall back onto the probability estimates of parent nodes.

2.4 Collaborative filtering
Given a database of users and their preferences for various items,

recommender systems aim to suggest to users new items that they
will probably like, but have not already consumed. A canonical
example is movie recommendation, a problem popularized by the
Netflix challenge [1]. Collaborative filtering is a very successful
approach to this problem, which makes recommendations based
solely on the preference database: the fundamental intuition is that
“similar” users will have “similar” preference, where “similar” refers
to a latent notion that is learned by the model.
Formally, our input is an incomplete matrixX ∈ Rm×n of user-

item preferences, where most Xij entries are missing. Our goal is
to fill in these missing entries with predicted scores. The state of the
art in collaborative filtering is matrix factorization: X is modelled
as X ≈ αTβ, where α ∈ Rk×m and β ∈ Rk×n and k is the
number of latent features [12]. Conceptually, each αi represents a
feature vector for users, and each βj a feature vector for items. The
simplest factorization model is to solve the optimization [19]

min
α,β

1
|O|

∑

(i,j)∈O

(Xij − αT
i βj)

2 + Ω(α,β ) (2)

where Ω(α,β ) = λα
2 ||α||2F +

λβ

2 ||β||2F . The first term makes the
model parameters predictive of the observed entries. The second
term is a regularizer that prevents overfitting on the observed en-
tries. Penalizing the α and β weights by their !2 norm is equivalent
to imposing a Gaussian prior on them [9, p. 64].

2.5 Our contributions
There are two main contributions to this paper. First, we present

a novel approach to response prediction based on matrix factoriza-
tion techniques from collaborative filtering. This model uses both
latent features as well as side-information in the form of page and
ad features. Ours is not a mere black-box application of collab-
orative filtering, however: as we will discuss subsequently, matrix
factorization models such as Equation 2 are inadequate for response

prediction, and require fundamental modifications. We additionally
propose an iterative procedure to leverage the complementary na-
ture of latent and explicit features. To our knowledge, the only prior
work on using collaborative filtering for response prediction is [6],
but it uses mixture-model approaches that have been superseded
by matrix factorization. While [6] concludes that these mixture-
models do not deal with the rare event problem in response predic-
tion data, our model demonstrates state-of-the-art performance.
Second, we provide a principled way to incorporate hierarchies

into matrix factorization methods for collaborative filtering. The
modelling details here are very different from how hierarchies are
used in existing response prediction models, since our approach is
based on a different foundation. There has been work on exploiting
hierarchical information in the CF literature, but only using neigh-
bourhood models [22, 23], and so the modelling details are again
completely different. Note also that such approaches are not ap-
plicable to response prediction for the same reasons that apply to
standard factorization methods, which we discuss in Section 3.

3. RESPONSE PREDICTION VIAMATRIX
FACTORIZATION

We now discuss how response prediction can be solved using
ideas from collaborative filtering (CF). We start by addressing why
a black-box application of CF techniques is insufficient.

3.1 Differences between CF and response pre-
diction

Recall that the goal in response prediction is to construct an es-
timator P̂ of the CTR that satisfies the three requirements outlined
in Section 2.2. If we treat the matrix PMLE as our input, then re-
quirement (i) asks us to fill in the missing entries of this matrix.
We observe an immediate connection between this task and CF: if
we treat pages as users, ads as items, and the entries of PMLE

ij as
being an “affinity” score of the (page, ad) pair (i, j), then we are
trying to predict the affinity for (page, ad) pairs for which there is
no historical data. Applying CF to solve this problem is based on
the intuition that “similar” ads will demonstrate “similar” CTRs on
a given page, where “similar” is some notion that is learned by a
mathematical model.
With this connection in place, it might appear that response pre-

diction can be solved by just feeding PMLE as the input to a col-
laborative filtering model, such as matrix factorization. However, a
standard matrix factorization PMLE ≈ αTβ as in Equation 2 does
not meet requirements (ii) and (iii): it does not output valid prob-
abilities in [0, 1], and it completely ignores the issue of confidence
for entries with a few views. This necessitates fundamental changes
to the factorization framework, which we detail below.

3.2 Confidence-weighted factorization
We can think of the problem of estimating Pr[Click|View; i, j]

as an analogue of the binary classification problem of estimating
Pr[y = 1|x]. If we consider a click to be a “positive” event, and
a non-click a “negative” event, we can think of the dyad (i, j) as
comprising Cij duplicated positive labels, and Vij−Cij duplicated
negative labels. Therefore, we have constructed a two dimensional
table, where each cell consists of several binary labels. [13] con-
structs a similar table, but unlike our setting uses it in conjunction
with explicit features for pages and ads.
There are now two problems to solve: we need to compute the

probability of each individual label in the table being positive or
negative, and we need to deal with the fact that there are multiple
such labels per cell. For the first problem, suppose for the moment
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that each cell (i, j) has a single binary label Xij . We now assume
that for a fixed set of page latent vectors α, the probability of a pos-
itive label arising for ad j may be modelled via logistic regression
with a weight vector βj , giving us PMF

ij = σ(αT
i βj). This is clearly

symmetric to assuming that for a fixed set of ad vectors β, the prob-
ability of a positive label for a page i has the given form. If we now
optimize over α,β jointly, we get the modified factorization model

min
α,β

1
|O|

∑

(i,j)∈O

(
−Xij logP

MF
ij (α,β )−

(1ij −Xij) log(1− PMF
ij (α,β ))

)
+Ω(α,β ), (3)

where Ω(α,β ) = λα
2 ||α||2F +

λβ

2 ||β||2F as in Equation 2. The
above objective can be thought of as replacing the square-loss in
Equation 2 with the more appropriate logistic loss for binary data.
Models of this type have been recently studied in the collabora-
tive filtering literature, such as in the RLFM model [4], which
optimizes parameters in a Bayesian manner. In statistics, similar
models have been considered in the context of modelling edges in
graphs [10]. SGD optimization of the above has been proposed in
the LFL model [15], of which the above is a special case for binary
inputs, and the FIP model [21]. Finally, [18] proposed a similar
model for collaborative filtering, where PMF

ij was further scaled to
constrain predictions to lie in a finite interval.
In the above, each αi represents a latent feature vector for pages,

and each βj a latent vector for ads. This assumes a low rank struc-
ture to P , which induces correlations between the matrix entries.
This sharing of parameters allows us to smoothen probability esti-
mates: even if a particular (page, ad) pair (i, j) has a few views, we
can still reliably estimate P̂ij by estimating αi from all other ads
shown on the page, and βj from all other pages the ad is shown on.
The remaining problem is how to deal with the multiple entries in

each cell of the table. Noting the connection of the above model to
logistic regression, the duplicated labels in the table are analogous
to having the same example x appear several times in a supervised
learning task, each time with a different labels. Logistic regression
can easily be performed on such a dataset, and it is straightfor-
ward to check that the number of duplicated labels merely appear
as weights in the likelihood term. The same holds in our problem,
and so we get the objective

F (α,β ;C, V ) =
1
|O|

∑

(i,j)∈O

(
−Cij logP

MF
ij −

(Vij − Cij) log(1− PMF
ij )

)
+ Ω(α,β ). (4)

where PMF is understood to be a function of α,β . This objective
clearly takes into account confidence in the entries: if a dyad has
small Vij , then very little weight is placed on the likelihood term
that measures its probability of click. The form of the objective is
somewhat similar to that of [11], which targets CF datasets where
there are no negative ratings. However, that paper uses a factoriza-
tion of the form X ≈ αTβ, which as mentioned earlier does not
output valid probabilities. Further, our objective is motivated by
a principled construction of a table of positive and negative labels
from the C, V matrices.
The objective in Equation 4 is differentiable, and may be opti-

mized using stochastic gradient descent (SGD). This allows us to
scale to very large datasets. The variations to the basic objective
that we describe in subsequent sections will not affect differentia-
bility, and so they will all be amenable to SGD training. As with
the standard objective in Equation 2, the objective in Equation 4 is
non-convex and thus SGD optimization only finds a local minima.

Empirically, this local minima is found to have good predictive per-
formance on test data.

3.3 Is factorization better than other methods?
Our confidence-weighted factorization overcomes the limitations

of MLE. First, it can make predictions for (page, ad) pairs with no
historical views. Second, even when there are historical views, it
returns a smoothened estimate that is learned from multiple (page,
ad) pairs, which has lesser variance than the raw MLE value. One
caveat is that our method is not guaranteed to converge to the MLE
as Vij → ∞, simply because the true probability Pij may not be
expressible as σ(αT

i βj). However, since we noted that our opti-
mization can be thought of as using the logistic loss, which is a
proper loss function [7], we can expect our estimates to be mean-
ingful approximations of Pij . In Section 6 we will demonstrate that
empirically, given a large enough number of latent features k, our
model converges to the MLE solution when Vij is large.
Recall from Section 2.2 that existing methods for response pre-

diction are based on either explicit features or MLE smoothing.
We will see what potential advantages the other methods have over
the factorization, and use these to guide extensions to our model.
Looking at the feature-based methods, the obvious difference to
our basic factorization model is that we learn latent features from
the historical data, and use these to make predictions. In standard
collaborative filtering problems, latent features are typically much
more expressive than explicit features, because they can capture
subtle correlations in the data [16]. However, the features used in
response prediction – for example, the spatial placement of the ad
on a webpage, the time it was displayed, et cetera – are known to
be highly influential to CTR by themselves, and so a similar con-
clusion cannot obviously be made here. Instead, the approaches
should be seen as orthogonal solutions that should be combined.
Compared to simple statistical models for smoothening the MLE,

one advantage of the factorization approach is that we can learn a
rich latent structure by choosing a sufficiently large number of la-
tent features k. However, the state-of-the-art LMMH technique [2]
warrants a closer study. LMMH is based on two ingredients. First,
the results of a baseline model only using features (such as logis-
tic regression) are used to compute an expected number of clicks
Ĉij for each dyad. Next, one fits a log-linear model on the clicks
C and expected clicks Ĉ under some statistical assumptions about
the data. This log-linear model is fitted by exploiting hierarchical
information for the pages and ads. This information is treated sepa-
rately from the other features (such as placement of an ad) because
of its special structure: specifically, as we noted in Section 2.3, the
hierarchy for an ad directly encodes information about correlations
amongst CTRs. The reason is that this is a high-dimensional cat-
egorical variable, whose outcomes appear amongst multiple cells
in the data matrix. The use of hierarchies helps LMMH handle the
extreme sparsity problem quite effectively.
With this understanding, we now study two important exten-

sions to the factorization model in turn: how to incorporate side-
information, and how to incorporate hierarchies. The resulting
model will be shown to have superior performance to both LMMH
and the feature-based methods. Table 1 provides a summary of the
components of our final model.

4. INCORPORATINGSIDE-INFORMATION
As discussed earlier, pages and ads possess explicit features other

than just their unique identifiers, such as the content of the ad, its
placement on the page, et cetera. In collaborative filtering, such
features are known as side-information. Side-information is pri-
marily useful for making predictions in cold-start settings, where
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Method Section Key idea
Confidence-weighted factorization Section 3.2 PMFij ≈ σ(αT

i βj) with confidence determined by Cij , Vij

Fusion with side-information Section 4.1 PSIij ≈ σ(αT
i βj + wTxij) for side-information given in xij

Iterative refinement Section 4.2 PMLEij → P SI
ij and confidence weighted factorization repeated

Hierarchy regularization Section 5.1 αi ∼ N (αPar(i),λ
−1
α I), βj ∼ N (βPar(j),λ

−1
β I)

Agglomerate fitting Section 5.2 αi ∼ N (αPar(i), λ
−1
α I),βj ∼ N (βPar(j), λ

−1
β I); C, V → CAgg, V Agg

Residual fitting Section 5.3 αi →
∑

u∈Path(i) αu, βj →
∑

v∈Path(j) βu

Hybrid hierarchical model Section 5.4 Hierarchy regularization + Agglomerate fitting + Residual fitting

Table 1: Summary of the various components of the model used in this paper.

we have a dyad involving an object that was unobserved during
training; for example, we may have an ad that has never been dis-
played before. In response prediction, the explicit features are
strongly predictive of the CTR, as demonstrated by the fact that
methods based just on explicit features were until recently the state-
of-the-art [17]. It is thus prudent to incorporate this information
into the factorization model for improved accuracy.

4.1 A joint factorization and feature model
Several ways of combining latent and explicit features have been

studied in the collaborative filtering literature. We will use a sim-
ple scheme employed by the LFL [15] and FIP models [21], where
we have a linear combination of the latent features and explicit fea-
tures:

PMF
ij = σ(αT

i βj + wTxij),

where xij consists of the explicit features for the dyad (i, j). It
is clear that our predictions will now be influenced by the side-
information, with w measuring the relative importance of the ex-
plicit features over the latent features. One now optimizes for the
latent vectors α,β as well as the weights w. Training the aug-
mented model can be done in an alternating fashion as suggested
in [15]. We describe a simplified version of this process: first, note
that the model may be rewritten as

PMF
ij = σ(

[
1;w

]T [
αT
i βj ; xij

]
), (5)

This can be seen as a logistic regression model where the matrix
factorization estimates αT

i βj are treated as additional input fea-
tures that are augmented with xij . This suggests a simple learning
strategy: first, we train the standard factorization model, yielding
estimates PMF. This step is equivalent to assuming that w ≡ 0.
Now we fix αT

i βj , and just optimize over w. This can be done
by feeding the features x′

ij =
[
αT
i βj ;xij

]
into a standard logistic

regression model. The resulting solution, P SI, predicts the click
probability using both latent structure as well as side-information,
thus enjoying the benefits of both approaches.

4.2 An iterative refinement procedure
Given the above model, a simple iterative procedure can be ap-

plied to further improve performance. Let us rewrite the confidence
weighted factorization model of Equation 4 as

min
α,β

1
|O|

∑

(i,j)∈O

−Vij

(
PMLE
ij logPMF

ij −

(1− PMLE
ij ) log(1− PMF

ij )
)
+Ω(α,β ). (6)

Earlier, we motivated the above as a sensible way to incorporate
confidence into the factorization model. However, the model is
limited by the historical data: recall that if a cell has a small to
medium number of views, then PMLE

ij will be noisy. This means

that our confidence weighting is itself noisy. Ideally, we would like
to weight each entry by the true probability Pij , which is the opti-
mal measure of confidence to guide our factorization model. But of
course, if we knew this quantity, our learning would be complete.
Yet this motivates the following EM-style procedure: we take the
predictions from our above model, PSI

ij , and use these in place of
PMLE
ij in the above equation. We now re-learn our confidence-
weighted factorization model using these new confidences. The
idea is that since PSI

ij is a more reliable estimate of the true prob-
ability that PMLE

ij , the factorization model is encouraged to focus
its modelling efforts on the “right” dyads. We can now iterate by
feeding the results of the newly learned factorization into a logistic
regression model, and use the resulting estimates P̂SI

ij as a fresh
set of confidence weights. This process may be repeated till con-
vergence. This scheme exploits the complementary properties of
the two models so that by improving the outputs of one model, we
can feed in more reliable inputs to the other.
We note a similarity to the previously discussed approach fol-

lowed in LMMH, with two subtle but important differences: (i)
LMMH uses a feature-based model to generate the initial refine-
ment of the data, based on which further smoothing is applied. By
contrast, we apply the factorization as the first step to refine the
data, and feed this into the feature-based model; and (ii) We iterate
the process till convergence. Distinction (ii) can naturally be ex-
pected to improve performance, a fact we verify empirically. We
argue that distinction (i) is important, because our factorization ap-
proach yields much more reliable estimates than a feature-based
method if we have even a small amount of historical data, as ob-
served in [16]. The smoothing applied in the first phase fundamen-
tally affects the overall performance, because only if the results
of the first model are sufficiently rich does the second stage phase
gain a significant advantage over modelling the training data as-
is. Put another way, LMMH is made to solve the difficult problem
of fitting the residual of an only moderately reliable feature-based
model. By contrast, in our case the second phase involves a much
simpler task, since most of the structure is already captured by the
factorization. These intuitions will be empirically corroborated in
Section 6.

5. INCORPORATING HIERARCHIES
Recall that the other ingredient behind the success of existing

response prediction methods is the use of hierarchical information
to overcome the extreme data sparsity. We now look how this can
be incorporated into our factorization model. There are three ba-
sic ideas: (i) hierarchical regularization, where we keep a latent
vector for each node in the page and ad hierarchies, and enforce
priors based on this to induce correlations; (ii) agglomerate fitting,
where we refine (i) by constructing more informative priors based
on agglomerating subtrees in the hierarchy; and (iii) residual fit-
ting, where we use fit the residual of the basic factorization using
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appropriate latent vectors in the hierarchy. Each of the methods
modifies different parts of the objective function in Equation 4 (as
noted earlier, without altering differentiability). The methods can
in fact be used in conjunction with each other, and thus represent
different facets of a larger approach to incorporating hierarchies.
We will return to this matter after first discussing the methods in
detail.

5.1 Hierarchical regularization
Our first idea is to let every node in the hierarchy possess its

own latent vector, and use this to construct priors that constrain the
latent vectors. For simplicity, we will use the notation αi to denote
the appropriate vector associated with the node i, and similarly for
βj : in Figure 2, β1, . . . ,βn represent the latent vectors for ads as
before, while βn+1, . . . ,βn+c represent the latent vectors for the
campaigns, and so on. When we refer to the matrix α, it is now in
R|HP |×k, and similarly for β.

β1 β2 βn

βn+1 βn+2 βn+c

βn+c+1 βn+c+a

βRoot

Root

Advertiser 1

Camp c

. . .
Ad 1 Ad nAd 2 . . .

. . .

. . . Advertiser a

Camp 1 Camp 2 Camp c-1

Figure 2: Each node in the hierarchy has a latent vector.

Recall that the standard !2 regularizer on α,β corresponds to
placing a zero-mean Gaussian prior on them, i.e.αi ∼ N (0,λ−1

α I).
With the above setup, we impose hierarchical priors on the latent
vectors, such that each latent vector has a prior so that it behaves
like its parent in expectation:

αRoot ∼ N (0,λ−1
RootI),∀i ∈ HP − {Root}αi ∼ N (αPar(i),λ

−1
α I)
(7)

To find the joint prior over α, note that given its parent, a node
is conditionally independent of all higher level nodes. Thus, we
replace the standard regularizer in Equation 4 by

Ω(α,β ) =
λα

2

∑

i∈HP

||αi − αPar(i)||22 +
λβ

2

∑

j∈HA

||βj − βPar(j)||22+

λR

2
(||αRoot||22 + ||βRoot||22). (8)

The regularizer helps in estimating vectors when there are few cor-
responding views. Suppose there are two siblings u, v with a com-
mon parent, and that node u has only a few views while node v has
many views. For v, the dominating term in the objective will be
the loss function, so its parameters will be optimized to be predic-
tive for the CTR. For u, the regularizer will dominate and push its
latent vector to be similar to the parent node. In turn, the parent
is encouraged to be close to its children, and so u, v are indirectly
encouraged to be similar to each other. This means that uwill “bor-
row strength” from v.
The above easily handles hierarchies that are not trees: instead

of the prior mean being a parent node’s latent vector, we can use
the average of all parents’ vectors. This approach has a total of
(|HP | + |HA|)k parameters. In practice, hierarchies are often
bottom-heavy, so that |HX | = O(|X|). Thus we learn roughly the
same number of parameters as in the standard setting. Of course,

the constant in theO(·) makes a difference in two ways: it adds the
risk of overfitting, and it potentially increases the number of local
optima. We will empirically verify that neither of these risks are
seriously manifested in practice.

5.2 Agglomerate fitting
In the previous section, the latent vectors for non-leaf nodes only

appear in the regularizer, and hence are only indirectly affected by
the click and view data. Intuitively, by making them directly de-
pend on the data, they will serve as more informative priors for
the leaf nodes. To do this, we use the hierarchy to agglomerate
the click/view data across many pages and ads, and try to predict
this data using the appropriate latent vectors. For example, for a
(page, campaign) pair (i, c), we agglomerate the clicks/views for
all children of c when shown on page i. We model the resulting
data using the vectors αi and βc. This will learn a sensible prior
for the children’s latent vectors.
Formally, we construct the Cartesian product of the hierarchies,

G := HP ×HA. Any (u, v) ∈ G is a tuple of nodes from the page
and ad hierarchies, and we associate with it the aggregated clicks
of all its children:

CAgg(u, v) =
∑

(u′,v′):(u,v)∈Par((u′,v′))

CAgg(u′, v′).

The base case is when both u and v are leaf nodes in the respective
hierarchies, so that CAgg(u, v) is the standard click value Cij . We
repeat the same process for the views. We now have click and view
matrices CAgg, V Agg ∈ R|HP |×|HA|. We optimize the objective of
Equation 4 using F (α,β ;CAgg, V Agg) along with the regularizer Ω
of Equation 8. Therefore, every latent vector appears in both the
objective and the regularizer. Figure 3 illustrates how we can think
of the new matrices as being augmentations of the original C, V .

Pages

Advertisements Campaigns Advertisers

Figure 3: Illustration of the agglomeration process. Arrows
denote that the clicks/views are added up.

There is a subtle problem with implementing agglomerative fit-
ting as-is: the clicks and views of individual (page, ad) pairs will be
“drowned out” by the ones corresponding to parent nodes, and our
predictions will no longer be fine-grained for each individual pair.
Concretely, consider some page i, an ad j, and the ad’s campaign
c. Then, the number of clicks/views for the (page, campaign) pair
(i, c) will be greater than the clicks/views for the (page, ad) pair
(i, j), by construction of the agglomerated click and view matri-
ces. Since the model of Equation 4 is confidence weighted by the
number of views, we will essentially ignore the contributions of
the (page, ad) pairs. One fix to this problem is to train our model in
stages. Letting αPar and βPar denote the latent vectors for non-leaf
nodes, we perform the following steps:

1. Learn α,β with αPar, βPar fixed. This is the standard factor-
ization model of Equation 4.

2. Learn αPar, βPar with α,β fixed. This asks the parent nodes to
be predictive for the agglomerated data, but using the already
learnt vectors for pages and ads e.g. when we predict for a
(page, campaign) pair.
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3. Relearn α,β with αPar,βPar fixed. This asks us to respect the
hierarchical prior when reconstructing the data matrix. Since
the parent nodes are not optimized at this stage, we do not
overfit on the agglomerated entries. We can use the result of
step (1) as initialization here.

One can think of this process as using hierarchies to give a princi-
pled way of finding good local optima for α,β .

5.3 Residual fitting
The previous extensions all enforce similarity among parameters

based on the hierarchy, but finally use the prediction σ(αT
i βj). A

sensible idea is to modify this prediction itself based on the hierar-
chy. Specifically, for the pair (i, j), we use the prediction σ(α̃T

i β̃j),
where α̃, β̃ modify the original vectors α,β based on the hierarchy.
A simple choice is the additive model

α̃ik = αik +
∑

u∈Path(i)−{i}

αuk

and similarly for β̃. Here, the fine-grained latent features for each
page are modelled as corrections over coarser latent features of par-
ent nodes, which may be thought of as bias terms. This technique
easily generalizes to non-tree hierarchies if we use the average la-
tent vector of all parent nodes on a per-level basis.

5.4 Putting it all together: a hybrid method
We can easily combine the ideas of the previous sections to cre-

ate the following hybrid approach: (i) our prediction for dyad (i, j)
involves all latent vectors along the respective paths in the hierar-
chy, (ii) we impose hierarchical priors on the latent vectors, and (iii)
we force the latent vectors for parent nodes to be predictive for ag-
glomerated data. We later demonstrate that empirically, this hybrid
performs significantly better than any of its individual components.
We also note that the hybrid can be easily augmented with addi-
tional side-information using the framework detailed in Section 4.

5.5 Handling cold-start pages and ads
We quickly comment on how the hierarchical extensions let us

estimate the latent vectors for a cold-start page or ad. As a simple
example, suppose there are several pages that share a common par-
ent node. Suppose one of them, page i, has no past history. Then,
if we use hierarchical regularization, αi will only appear in the reg-
ularization term Ω in Equation 8. Thus, it optimized by setting it
equal to αPar(i). If this parent node is estimated via agglomerative
fitting, it will be a good representative of the common structure
between the siblings of i. Therefore, we will be able to make rea-
sonable predictions for page i on test data. This argument holds
equally for entities that are “almost cold-start” i.e. which have ex-
tremely limited past history. Having inferred the latent vectors in
this manner, we can now employ the framework of Section 4.

6. EXPERIMENTS
Our experiments address several questions: (i) how well does the

basic confidence-weighted factorization model perform compared
to existing response prediction methods?, (ii) do the hierarchical
extensions improve performance?, and (iii) does exploiting latent
features and side-information offer noticeable performance gains?
To answer these questions, we conducted experiments on three very
large real-world datasets, which shows our model is highly scalable
and that it outperforms current state-of-the-art methods. MATLAB
code for our methods is available online at [14].

6.1 Datasets used
Our datasets were collected from Yahoo! traffic streams. (Un-

fortunately, we cannot release our datasets due to their proprietary
nature.) To mirror the real-world prediction problem, the train-test
splits in all our datasets is done in a temporal manner, so that the
events in the training set occur before those in the test set. All splits
were conducted 20 times to ensure the significance of our results.
Since the datasets are proprietary, we cannot report the correspond-
ing number of pages and ads, clicks and views, nor the number of
days used to construct the train-test split. Instead, we just report the
number of nonzero records (≥ 1 view) in the train and test sets.
We used the same three datasets as [2]. These datasets each in-

volve the interaction between ads and pages, and differ in the na-
ture of the interaction. The first data set, Click, records the event
of an ad being clicked when shown on a page. Both pages and
ads have a two level hierarchy in this dataset. The second dataset,
PVC, measures how many users performed a pre-determined ac-
tion after viewing an ad. Finally, the post-click conversion dataset
(PCC) measures how many users performed a pre-determined ac-
tion after clicking an ad. Both PVC and PCC have four level ad
hierarchies, and the same two level page hierarchy as with Click.
Of the three datasets, PVC is the sparsest, since post-view con-
versions are generally difficult to measure. There are ∼(90B, 3B)
(train, test) records forClick,∼(7B, 250M) for PVC, and∼(500M,
20M) for PCC. The three datasets also include interaction features
for the user involved in each interaction (e.g. the age and gender of
the user that clicks on an ad, how recently the ad was shown to the
user, et cetera).

6.2 Methods used
We implemented the confidence-weighted factorization of Sec-

tion 3 (denoted “CWFact” in our figures), two of our hierarchical
extensions (denoted “Agglomerative”, and “Residual”), and the hy-
brid hierarchical method of Section 5.4 (denoted “Hybrid”). (The
hierarchical regularization method in Section 5.1 by itself showed
similar performance to CWFact, as is essentially subsumed by Ag-
glomerative.) The basic versions of these methods did not include
explicit features, and are purely based on matrix factorization. We
additionally ran the CWFact and Hybrid methods with side-information
using the joint model of Section 4, and denote these methods by
“CWFact+LogReg” and “Hybrid+LogReg”. Finally, the method
“Hybrid+LogReg++” used the iterative scheme detailed in Sec-
tion 4.2, where we iteratively use the model’s predicted number
of clicks as input to a residual model. We ran this model till con-
vergence.
We trained all models using stochastic gradient descent (SGD),

and used the MapReduce code from the Apache Mahout project
(http://mahout.apache.org/) to scale to the challenging sizes
of the datasets. We parallelized the optimization by fixing the page
latent features αi and then optimizing for the advertisement latent
features βj using SGD. This optimization of each individual βj
can be done in parallel. Once the estimates of the βj ’s converged,
we fixed their values and optimized the αi’s in parallel; this alter-
nating scheme was repeated until convergence. For the hierarchi-
cal regularization scheme, we optimized the parameters level-by-
level based on the hierarchy. Thus, for the initial optimization of
advertisement features βj , the campaign features were fixed and
regularization was done towards these fixed latent features. Once
optimization of the advertisements concluded, the campaign fea-
tures were optimized with regularization towards fixed advertiser
features, and so on.
Regarding parameter selection, we picked the strengths of regu-

larization λα, λβ by cross-validation. Due to space limitations, we
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cannot show results for a range of latent feature dimensions, k, and
instead just show results for k = 100. Qualitatively, we found that
the gains of our model were modest with a much smaller value of
k = 10, indicating that it is important to choose a sufficiently large
number of latent features to capture the structure in the data.
We compare to three state-of-the-art methods, discussed earlier

in Section 2.2. The first is the model of [2], denoted “LMMH”.
The second and third are variants of a logistic regression model
that uses explicit features for pages and ads, similar to [17]. Prior
to LMMH, these models were the state-of-the-art for response pre-
diction [17]. We fed these logistic methods input features derived
from the page and ad hierarchies. For example, each ad has its cor-
responding advertiser ID as a categorical feature. The first variant
of logistic regression, “LogReg”, just used all the raw features as
input. The second variant, “LogRegHash”, also uses cross-features
of pages and ads. To mitigate the dramatic increases in the number
of features, following [2], we applied the hashing trick of [20] to
compress the features into a smaller number of bins.

6.3 Evaluating performance
We use the standard performance metric of Bernoulli log-likelihood,

which measures how well the predicted CTRs match the CTR on
the test set. For a test set T of (page, ad) pairs with clicks and views
CT , V T , given the model’s predictions P̂ij , the log-likelihood is:

L = −
∑

(i,j)∈T

log P̂
CT

ij
ij (1− P̂ij)

(V T
ij −CT

ij).

Again, for confidentiality reasons we cannot report raw log-likelihood
numbers for any method. Hence, on all datasets we report the %
lift in likelihood over the appropriate baselines.

6.4 Results on large-scale datasets
Our results are summarized in Figure 4. We see that for all

datasets, the Hybrid+LogReg++ model gives the best log-likelihood
lift, in particular outperforming LMMH in terms of average lift,
and with a consistently lower standard deviation. The multiple it-
erations used in Hybrid+LogReg++ are seen to have a useful boost
over Hybrid+LogReg, which by itself outperforms LMMH on all
but PCC, where LMMH performs marginally better. This shows
that the combination of factorization, hierarchies and side-information
gives state-of-the-art performance. Note also that the good perfor-
mance of Hybrid+LogReg shows that it is not just the multiple it-
erations that give us the advantage over LMMH. A closer study
reveals the value of each of these components in our final model.
The importance of using hierarchies is demonstrated by the sur-
prisingly poor performance of the basic CWFact model, which is
outperformed by even the simple LogReg models. However, these
feature-based models are in turn significantly outperformed by the
Hybrid method that adds hierarchies to the factorization. Note also
that the Hybrid method always manages to significantly improve
over the individual Agglomerative and Residual sub-models. Yet,
we conclude that it imperative to have a model that combines latent
features and side-information, because the Hybrid method by itself
is merely competitive with LMMH; it is only when we add side-
information to the factorization that we start to see improvements.
For our models that used both latent features and side-information,

we found that the LogReg component invariably put relatively lit-
tle weight on the standard features, meaning that the factorization
“feature” was considered most important. This is expected, since
the factorization model by itself is strongly predictive of the CTR.
To further analyze the interplay between the factorization and side-
information, Figures 5a and 5b gives log-log plots of the ratio of
predictions of the Hybrid+LogReg++ model and the LogReg model

to the test set CTR, ordered by increasing number of views on the
training set. The flat line in black is the optimal solution where
the model prediction matches the test set CTR, and both are dis-
played on the same y-range for ease of comparison. (Recall that we
are unable to report exact view numbers for our datasets. Hence,
in both plots, we removed identifying information about the num-
ber of views on the x-axis.) There are two striking characteris-
tics in the plots: first, the Hybrid+LogReg++ model has signifi-
cantly less variance than LogReg, which shows that its factoriza-
tion component helps the LogReg component by capturing most of
the structure in the data through latent features. Second, the Hy-
brid+LogReg++ model converges much quicker to the true CTR
than LogReg model in terms of number of views. This shows that
our model can successfully smoothen at a much greater degree of
sparsity in the training data, corresponding to dyads with a few
number of views. As we noted earlier, similar behaviour has been
observed for standard collaborative filtering data [16].
Finally, to see how the performance of Hybrid+LogReg++ varies

across each iteration, Figure 5c shows the lifts on the Click dataset
after each iteration. An iteration here refers to a single application
of both the Hybrid and LogReg models, using the results of the
previous iteration as input. The results are encouraging: we almost
always improve the log-likelihood as we run the model for more
iterations. (We observed similar results on the other datasets.) This
shows that with minimal added cost, the simple iterative scheme of
Section 4 offers further gains for our framework.

7. CONCLUSION AND FUTURE WORK
This paper showed how we can improve on the state-of-the-art

in response prediction using a novel approach based on collabo-
rative filtering. Our model is based on a matrix factorization that
learns latent structure from the data, and additionally exploits side-
information in the form of page and ad features. We proposed an
iterative procedure to further exploit the complementary nature of
latent and explicit features. Finally, we showed how to incorporate
hierarchical information for pages and ads into our model. Exper-
imental results on Yahoo! traffic data show that our method out-
performs existing response prediction approaches, and that it can
handle high amounts of sparsity in the training data.
There are several avenues for future work. First, the matrix fac-

torization model proposed here uses MAP estimates of the weight
vectors. A Bayesian approach involving marginalization of these
parameters would be useful, though it poses challenges due to the
interdependencies between parameters. Second, it is important to
address other real-world complexities that arise in response predic-
tion, such as the fact that ad behaviour is time-varying.
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(b) PVC.
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(c) PCC.

Figure 4: Log-likelihood lifts on large-scale datasets.
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Figure 5: Analysis of factorization model’s performance on Click. See text regarding the missing axes in (a) and (b).
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