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ABSTRACT 
Because of practical limits in characterizing the safety profiles of 
therapeutic products prior to marketing, manufacturers and 
regulatory agencies perform post-marketing surveillance based on 
the collection of adverse reaction reports ("pharmacovigilance").   

The resulting databases, while rich in real-world information, are 
notoriously difficult to analyze using traditional techniques.  Each 
report may involve multiple medicines, symptoms, and 
demographic factors, and there is no easily linked information on 
drug exposure in the reporting population.  KDD techniques, such 
as association finding, are well-matched to the problem, but are 
difficult for medical staff to apply and interpret. 

To deploy KDD effectively for pharmacovigilance, Lincoln 
Technologies and GlaxoSmithKline collaborated to create a web-
based safety data mining web environment.  The analytical core is 
a high-performance implementation of the MGPS (Multi-Item 
Gamma Poisson Shrinker) algorithm described previously by 
DuMouchel and Pregibon, with several significant extensions and 
enhancements.  The environment offers an interface for 
specifying data mining runs, a batch execution facility, tabular 
and graphical methods for exploring associations, and drilldown 
to case details.  Substantial work was involved in preparing the 
raw adverse event data for mining, including harmonization of 
drug names and removal of duplicate reports. 

The environment can be used to explore both drug-event and 
multi-way associations (interactions, syndromes).  It has been 
used to study age/gender effects, to predict the safety profiles of 
proposed combination drugs, and to separate contributions of 
individual drugs to safety problems in polytherapy situations.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining, scientific databases. 
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1. INTRODUCTION 
It is widely recognized that there are practical limits on the degree 
to which safety profiles of therapeutic products (drugs, vaccines, 
medical devices) can be fully characterized before these products 
are approved for marketing: pre-marketing studies are inherently 
too short, with study populations that are too small and too 
homogeneous, to be able to detect important but relatively rare 
adverse events.  The opportunity for a new drug’s true side effect 
profile to reveal itself is often realized after the drug is approved 
and then used in conjunction with other therapies.  To provide an 
objective basis for monitoring and assessing the safety of 
marketed products, pharmaceutical companies and regulatory 
agencies have implemented post-marketing surveillance activities 
(“pharmacovigilance”) based in large measure on the collection of 
spontaneously generated adverse reaction reports.  Report 
initiation (by health professionals and consumers) is generally 
voluntary; by contrast, the pharmaceutical companies are 
generally under legal obligation to follow up on reports that they 
receive and to pass them along to various regulatory authorities. 

As a result of these pharmacovigilance efforts, a number of large 
databases of spontaneous adverse event reports have come into 
existence:  Each major pharmaceutical company has a proprietary 
database of reports focused on cases in which one of the 
company's products was considered to be “suspect” (~500,000 
reports for the larger pharmaceutical companies).  In addition, 
there are several combined databases maintained by government 
regulatory agencies and health authorities that are available in 
varying degrees for public use; some of these combined databases 
contain as many as ~3,000,000 reports.  Although the various 
private and public databases differ in detail, the core content is 
fairly consistent:  For each adverse event case, there is a 
demographic record (age, gender, date of event, seriousness of 
event), one or more therapeutic product records (generic or trade 
name, suspect or concomitant designation, route of 
administration, dosage), and one or more records documenting a 
sign, symptom or diagnosis (typically represented as a coded 
“event term” based on a standardized medical coding dictionary).  
Individual databases may also contain narratives (from which 
event terms were coded), outcomes (e.g., hospitalization, death), 
and report source (consumer or health professional, domestic or 
foreign).  
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These databases of spontaneous reports represent the largest 
existing sources of information relating specifically to the side-
effect profiles of marketed therapeutic products.  Systematic 
analysis of this data has proved difficult both for conceptual and 
practical reasons:  concerns about the effects of underreporting, 
the lack of easily linkable measures of exposure (the 
“denominator problem”), inconsistencies and evolution over time 
in naming/coding practices, and technical issues relating to 
database access and computational tractability.  In the absence of 
systematic analysis methods, the emphasis historically has been 
on largely non-analysis-based “monitoring” through such 
techniques as case-by-case examination of newly reported cases, 
tabulations of counts of events for specific drugs, and detailed 
review of all the data fields (including, specifically, the free-text 
medical narratives) of cases associated with a possible safety 
concern.  These traditional approaches tend to be highly 
dependent on the knowledgeability and alertness of individual 
safety reviewers.  They also suffer from an absence of contextual 
information: in isolation, it can be very difficult to tell whether 10 
cases of a specific drug-event combination is disproportionately 
frequent such that is “interesting” and merits further investigation. 

There has been a growing interest, originating at government 
health authorities, in the potential use of statistical data mining 
(“association finding”, “disproportionality analysis”) as a means 
of extracting knowledge from pharmacovigilance databases.  Such 
“safety data mining” holds the promise of contributing to a more 
systematic approach to the monitoring of drug safety and to the 
earlier detection of potential problem areas.  In 1997, Fram and 
DuMouchel began a long-standing research partnership with Dr. 
Ana Szarfman, Medical Officer at the Food and Drug 
Administration Center for Drug Evaluation and Research, to 
experiment with the application of DuMouchel’s Gamma Poisson 
Shrinker (“GPS”) and Multi-Item Gamma Poisson Shrinker 
(“MGPS”) techniques to FDA’s combined SRS and AERS 
databases and to validate results retrospectively against known 
drug-induced adverse reactions [1,2,3,4]. Independent, parallel 
efforts have proceeded at the UK Medicines Control Agency 
(MCA) where Dr. Stephen Evans has explored the use of 
proportional reporting ratios (PRR’s)[5] and at the Uppsala 
Monitoring Centre where Edwards, Lindquist, Bate and others 
have pursued the use of techniques based on Bayesian neural 
networks[6]. 

GlaxoSmithKline (“GSK”) and Lincoln Technologies (“Lincoln”) 
began a collaboration in 2001 to apply safety data mining 
techniques both to provide direct leverage in addressing GSK’s 
core business problems of pharmacovigilance and risk 
management and, more broadly, to create decision support tools 
to assist with a variety of complex safety-related business issues.  
This work began in a “service bureau” mode, where Lincoln staff 
performed data mining runs using the MGPS software and the 
publicly available FDA adverse event data (“FOI AERS”) and 
delivered analysis results in tabular and graphical form to GSK 
pharmacovigilance staff.  At this stage of the collaboration, data 
mining projects required manual integration of results from 
several different software tools utilized for the distinct steps of 
data extraction/transformation, data mining, and output 
visualization.  Positive early scientific results demonstrated the 
practicality and utility of the overall approach, and also suggested 
the desirability of providing GSK pharmacovigilance staff with a 
means for direct access to the technology to support even wider 

application of the approach across a number of GSK’s safety 
surveillance sites. 

The focus of this paper is to report on the joint effort by Lincoln 
and GSK to define, design, implement, test, and deploy a web-
based visual data mining environment (“WebVDME”) that 
packages sophisticated KDD techniques for pharmacovigilance in 
a format that is accessible to the intended medical end-user 
community. 

2. REQUIREMENTS & ARCHITECTURE 
The WebVDME project was undertaken on the understanding that 
the initial focus would be on creating a custom solution to meet 
GSK’s specific needs, but that the software would eventually 
become a commercial product generalized and enhanced for 
deployment at other pharmaceutical industry and government 
clients.  The application would start out being hosted at Lincoln, 
but could later be moved to reside on a system or systems at GSK.  
Lincoln and GSK also realized that the project would need to 
follow a documented System Development Life Cycle (SDLC) 
development process appropriate to a major application in a 
regulated industry and would also benefit from close interaction 
between the developers and end users to try out and refine system 
features. 

The formal process began with a list of GSK’s primary business 
requirements for the system, which included: 

• Implementation as a “thin client” web-based application (no 
software, controls, applets, etc., to be installed on client 
computer), compatible with access through GSK’s existing 
firewalls and compliant with GSK’s major IT standards (MS 
Windows 2000 servers, Oracle database). 

• Data mining based on MGPS, including identification of 
signals related to two-way (drug-event) and multi-way (drug 
interaction, multi-event syndrome) associations, with end-user 
control over choices regarding stratification and subsetting. 

• Access to the major public U.S. drug and vaccine databases, 
with ability to select dictionary level and combining strategy 
for drug and event categories (e.g., use of “brand” versus 
“generic” names for drugs, lumping of closely synonymous 
adverse event symptom terms) . 

• A user interface suitable for direct use by medical staff. 

• Output of data mining results in graphical and tabular form by 
means of the web interface, including screening and subsetting 
of results, and also the ability to download results for use with 
Excel and with other third-party graphics and statistical 
packages. 

Based on these results, a technical architecture for the application 
was designed as shown below in Figure 1, below. 

The various computer system components depicted in the 
architecture perform the following roles: 
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• Client computers (standard PC workstations) – support the 
operation of Internet Explorer to provide browser access to the 
data mining environment.  Also support optional software 
packages (e.g., Microsoft Excel) for use with data downloaded 
from the data mining environment. 

• Application server (Intel/Windows 2000 Server/Advanced 
Server or Sun Sparc/Solaris 2.8) – runs web server and Java 
Server Page (JSP) server to support the WebVDME 
application, which is implemented as JSP pages and supporting 
Java classes. 

• Oracle server(s) (Oracle 8i or 9i) – runs the Oracle database 
that contains the safety database(s), data mining results, and 
administrative/control information for WebVDME. 

• Data mining server (Intel/Windows 2000 Server/Advanced 
Server or Sun Sparc/Solaris 2.8) – runs MGPS data mining 
algorithm plus Java support classes. 

The present configuration hosted by Lincoln for GSK includes a 
dedicated 2-processor Windows server (Dell PowerEdge 2650), 
with 4 GB of main memory and 100 GB of disk space.

JD
BC

Tomcat: JSP's/Servlets

Microsoft IIS

Application Server

Oracle Server 

Run Results Tables Adverse Event  Data

Datamining Engine 

Job Scheduler
Data Extraction Engine

MGPS Engine

WebVDME Server Components
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Web Browser

Local Graphics

MS Excel JD
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C
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Figure 1. WebVDME Architecture 

 

3. DATA SOURCES & PREPARATION 
As described above, there exist a variety of public and company-
specific pharmacovigilance databases which share a common 
conceptual organization (case reports that contain information on 
demographics, drugs, and events) but differ in details of field and 
table naming, presence or absence of specific attributes, and use 
of specific medical coding dictionaries.  To insulate both the 
application and the end users from superficial variation in the 
detailed formatting of the target safety database, we decided on a 
design that supports multiple database “configurations” each of 
which defines a mapping between user-visible “variables” and 
specific database tables and columns, including specification of 
plausible roles for the variables (e.g., a drug name, an event name, 
an attribute suitable for use in stratification or subsetting, etc.)  
These configurations can be set up, using a set of configuration 
management WebVDME web pages, by expert users who are 
familiar both with the target database schema and the 
pharmacovigilance application; medical end-users work with the 
application-specific variables so defined (end-users do not need to 
be aware of the target database schema).  Multiple configurations 
can be used to support user access to several different databases 
(e.g., to do a data mining run first on the public data and then on 

in-house data), and also to several different versions of the same 
database (e.g., different chronological snapshots, or versions that 
include or exclude so-called “concomitant” medications). 

The specific database that was the initial focus of the GSK 
collaboration is the public-release version of FDA’s AERS 
database (FOI AERS), which contains approximately 3,000,000 
adverse event reports collected from 1968 to the present 
(available as series of quarterly updates from NTIS).  Substantial 
pre-processing of this data is required to make it appropriate for 
MGPS safety signaling (this pre-processing must be carried out 
with each new quarterly release of the public data). 

There are several distinct reasons for pre-processing.  First, 
because the data was collected over more than three decades, 
using several different database organizations, mapping and 
recoding is required to present a uniform view of the data. 

Second, drug names are collected as free text, with substantial 
variation among submitting organizations and individuals in how 
trade, generic, or mixed names are entered; whether packaging, 
route-of-administration and dosing information is provided; and 
in punctuation and spelling; etc.  Also, the desired granularity of 
drug information for use in data mining can vary depending on 
the intended analysis goal (while it is often most useful to 
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consider drugs based on the same molecular entity as equivalent, 
trade names may be useful in distinguishing between drugs 
produced by different manufacturers or between uses of a 
common substance for different disease indications).  Lincoln 
uses an extensive set of parsing and lookup tables to make 
consistent generic and trade names available. 

Third, there is a need to remove duplicates.  Adverse event 
databases typically contain multiple versions of the same case 
because of regulatory requirements to submit an initial expedited 
report plus a series of follow-up reports as addition information 
about a case because available.  For purposes of statistical data 
mining these multiple versions need to be collapsed to a single 
“best representative version” of the case.  Beyond this versioning 
problem, there are several other significant sources of case 
duplication: multiple reports of the same medical event by 
different manufacturers and reports arriving through different 
pathways.  In the context of an association-finding technique, 
report duplication represents a common source of false positives 
(especially for otherwise rare higher-order associations).  Lincoln 
has implemented sophisticated “fuzzy-equality” case-matching 
algorithms to identify likely duplicate reports. 

Based on the success of the initial project accessing FOI AERS, 
GSK has decided to extend the use of the data mining system to 
operate on its internal adverse event (“OCEANS”) database.  This 
extension to working with the OCEANS data does not require 
software modification because of WebVDME’s configuration 
layer, described above, that takes care of the mapping between 
user-visible data mining variable names and the specific logical 
and physical structures used in the pharmacovigilance database. 

4. MGPS & EXTENSIONS 
The analytical core of the WebVDME application is a high-
performance implementation of the MGPS (Multi-Item Gamma 
Poisson Shrinker) algorithm described previously by DuMouchel 
and Pregibon [2].  MGPS is based on the metaphor of the “market 
basket problem”, in which a database of “transactions” (adverse 
event reports) is mined for the occurrence of interesting 
(unexpectedly frequent) itemsets (e.g., simple drug-event pairings 
or more complex combinations of drugs and events representing 
interactions and/or syndromes).  Interestingness is related to the 
factor by which the observed frequency of an itemset differs from 
a nominal baseline frequency.  The baseline frequency is usually 
taken to be the frequency that would be expected under the full 
independence model, in which the likelihood of a given item 
showing up in a  report is independent of what other items appear 
in the report.  (Other choices for the baseline frequency are 
possible; see discussion of “comparative analysis” below.) 

For each itemset in the database, a relative reporting ratio RR is 
defined as the observed count N for that itemset divided by the 
expected count E.  When using the independence model as the 
basis for computing the expected count, MGPS allows for the 
possibility that the database may contain heterogeneous strata 
with significantly different item frequency distributions occurring 
in the various strata.  To avoid concluding that an itemset is 
unusually frequent just because the items involved individually all 
tend to occur more frequently in a particular stratum (“Simpson’s 
paradox”), MGPS uses the Mantel-Haenszel approach of 
computing strata-specific expected counts and then summing over 
the strata to obtain a database-wide value for the expected count. 

To improve upon the estimation of “true value” for each RR 
(especially for small counts), the empirical Bayesian approach of 
MGPS assumes that the many observed values of RR are related 
in that they can be treated as having arisen from a common “super 
population” of unknown, true RR-values. The method assumes 
that the set of unknown RR is distributed according to a mixture 
of two parameterized Gamma Poisson density functions, and the 
parameters are estimated from a maximum likelihood fit to the 
data.  This process provides a “prior distribution” for all the RR’s, 
and then the Bayes rule can be used to compute a posterior 
distribution for each RR. Since this method improves over the 
simple use of each N/E as the estimate of the corresponding RR, it 
can be said that the values of N/E borrow strength from each 
other to improve the reliability of every estimate. 

The improved estimates of RR—referred to as EBGM (Empirical 
Bayes Geometric Mean) values—are actually derived from the 
expectation  value of the logarithm of RR under the posterior 
probability distributions for each true RR.  EBGM is defined as 
EBGM = exponential of expectation value of log(RR).  EBGM 
has the property that it is nearly identical to N/E when the counts 
are moderately large, but is “shrunk” towards the average value of 
N/E (typically ~1.0) when N/E is unreliable because of stability 
issues with small counts. The posterior probability distribution 
also supports the calculation of lower and upper 95% confidence 
limits (EB05, EB95) for the relative reporting ratio.  A technical 
summary of MGPS is included at the end of this paper. 

Two new extensions to the MGPS data mining algorithm were 
developed in response to pharmacovigilance data mining needs: 

1. Ability to shrink toward the all-2-factor model when looking 
at higher-order effects.  In the study of multi-item 
associations in pharmacovigilance (drug interactions, 
syndromes), it is important to be able to distinguish effects 
that result from the synergistic combination of multiple items 
from effects that are only the consequence of the pairwise 
associations.  An extension to MGPS supports computing the 
EBGM scores for higher-order effects based directly on 
expected values that can be estimated from already-computed 
two-factor relationships.  With this enhancement, EBGM’s for 
higher-order combinations are significantly high only when 
the observed count differs significantly from what would be 
expected from the component two-factor relationships.   

2. Highlighting period-to-period change.  MGPS can make use 
of baseline values (“expected counts”) that have been derived 
in some fashion other than from the standard full 
independence model, and is also able to perform iterative data 
mining runs on subsets that contain all database records 
belonging to a series of time windows.  In this extension, 
MGPS generates the expected counts for the second and 
subsequent iterations from the EBGM estimates computed up 
through the previous iteration.  The resulting signal scores are 
a measure of change from a prior time period, which is useful 
for temporal trend analysis (e.g., detecting an altered safety 
profile due to a change in pharmaceutical manufacturing or in 
physician prescribing patterns).  

The WebVDME project benefited substantially from the 
availability of an initial C++ implementation of MGPS developed 
over a period of years in collaboration with DuMouchel, and also 
from a recent NIH-sponsored activity to develop a high-
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performance implementation of the method.  The association-
counting phase of the algorithm (which accounts for much of the 
time and space required for execution) uses a modification of the 
“a priori” method to prune counting of higher-order associations 
when the counts for their component lower-order associations 
imply that the higher-order count cannot meet a minimum count 
threshold [7].  Counting is implemented using a hash table to store 
the count data, with an ability to write out and merge partial 
results when working with very large problems that would exceed 
available physical memory or address space.  In order to speed up 
the maximum likelihood estimation of the parameters of the prior 
distribution in the empirical Bayes model, a summary of the table 
of counts and baseline values, computed using the data squashing 
methods of DuMouchel et al [8] is substituted for the much larger 
baseline values file. 

5. USER INTERFACE & CAPABILITIES 
The WebVDME user interface is organized around a set of “tabs” 
and links that lead to major components of the system.  The 
principal tabs are: Data Mining (specifying and initiating data 
mining runs), Analyze (exploring data mining results), and Case 
Series (reviewing the details of specific cases identified through 
data mining).  There are also a set of administrative functions 
related to creating new users and to granting privileges for using 
the different components of the system in a production 
environment. 
MGPS data mining runs are defined through a “wizard” (a multi-
step series of web page dialogs) that guides the user in selecting 
the variables to be used as the source of data mining items, in 
setting up stratification and subsetting, and in making various 
other technical choices such as the maximum number of items in 
an itemset and the minimum count required to consider an 
itemset.  The first page in the wizard is shown in Figure 2 below. 
When a run definition is completed, it can be submitted for 
execution (either immediately or at a scheduled time).  Execution 
proceeds in the background; the user can continue working to 
define or analyze other runs, or can log out.  Email notification of 
the completion of submitted runs can be requested.   

 
Figure 2.  Selecting variables for use in data mining. 

The results of a run are stored in an Oracle-based output table that 
can be accessed by clicking the Analyze tab or the Analyze link 
in the Run History table.   The Run Results table can be quite 
large (e.g., 500,000 rows), and a set of filtering capabilities is 
provided to help focus on associations in the table of particular 
interest.  The Filter dialog is shown in Figure 3. 

Through filtering, the user can select a set of specific drugs and 
events to show in the table (using either the primary terms for 
drugs and adverse events or, if supported by the specific safety 
database, by higher-level term categories in a dictionary).  It is 
also possible to focus on a specific dimension (e.g., 2-way 
associations in a run that involves both 2-way and 3-way 
associations), or on a specific pattern of item types (e.g., only 
associations involving two drugs and one event).  Additional 
selection criteria can be provided through a SQL WHERE clause 
(e.g., specifying EB05 > 2 to focus on associations that reliably 
occur at least twice as frequently as would be expected from 
independence). 

Filtered results can be displayed as a table as shown in Figure 4.  
By default, the columns shown include the items in the 
association, the observed (N) and expected (E) counts, RR, 
EBGM, and the 5th and 95th percentile confidence limits (EB05, 
EB95).  Additional results columns are optionally available.  
Filtered tabular results can also be downloaded as a spreadsheet. 

By clicking on the leftmost column (with the magnifying glass), 
the user can drill down to a list of the specific adverse event 
reports behind the association.  This list can be used to drill down, 
further, to full details for individual case reports, or can be saved 
into a “case series” that can be used to facilitate evaluation of a 
potential safety signal via a careful case-by-case review. 

WebVDME also supports a set of application-specific graphs.  
Figure 5 shows one graph type, used to track the emergence of 
safety signals over time when performing a MGPS run involving 
the iterative analysis of cumulative subsets. 

Graphs are implemented as GIF output; display of the graph takes 
place wholly on the server and can be viewed on any browser.  
This simple approach to graphics simplifies deployment relative 
to schemes involving downloading controls or applets to the 
client, which can run into client computer configuration and 
firewall issues.  Some interactivity is provided through use of 
“mouseover” to show the statistics behind elements of the graph, 
and by providing drilldown from graphical elements to the 
supporting case reports.  In cases where more sophisticated 
graphics are required, WebVDME provides for download of data 
mining output to graphics packages popular in the pharmaceutical 
industry. 

Additional system capabilities include site administration, 
including control over how batch jobs are assigned to processors, 
and a variety of information displays (“audit trails” documenting 
run and analysis choices that lie behind a display, descriptions of 
runs and case series, on-line “help” screens describing system 
use).  WebVDME has also been integrated with a data simulation 
capability (developed with support from CDC), to generate 
artificial background databases and signals for use in evaluating 
MGPS signal detection operating characteristics through Monte 
Carlo techniques. 
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Figure 3. Filter results dialog. Attention is focused on drug-event associations involving the drug Acetaminophen and any 
event term belonging to a list of specified system organ classes (Blood, Card, Cong, etc.). The example also includes 
further restrictions on the temporal subset (1985-2002) and the  association signal score (EB05 > 2).     

 

 
Figure 4. Tabular display of data mining results corresponding to filter in Figure 3. A total of 28 drug-event associations 
match the filter criteria. Downward- and upward-pointing triangles next to each column heading provide control over 
sort order; in this case the results are presented in order of descending EB05.                           
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Figure 5. Specialized graph for displaying evolution of signal scores over time (for Acetaminophen). Columns represent 
cumulative yearly results. Rows represent different adverse event terms, ordered from top to bottom according to the 
first occurrence chronologically of EB05 > 2. Gray-scale indicates signal-score strength; number in each cell gives count 
of reports mentioning the drug and the event as of the corresponding point in time.  

6. DEVELOPMENT PROCESS 
Over the 8-month WebVDME development period, the principal 
Lincoln team members included a project manager/application 
specialist, 3 senior software developers, and a senior technical 
writer/software quality specialist.  GSK project participants 
included pharmacovigilance managers and staff and a software 
quality team.  The month-by-month sequence of development 
activities in the project was as described in Table 1. 

Table 1.  Development Project History 

Month Activities 

pre-Feb 
2002 

Custom data mining analyses carried out by Lincoln 
for GSK, early discussion of the web site concept. 

Feb  
2002 

Contract draft completed, including project plan and 
major requirements 

Mar  
2002 

Formal contract signing, early prototype 
development, requirements identification 
teleconferences with GSK project team. 

Apr 
2002 

First live demo of data mining and results viewing 
(using 2 prototypes focused on controlling data 
mining runs and on tabular/graphical results display. 

May  
2002 

Separate prototypes integrated, test data acquired 
and cleaned, initial “help” documentation, 
requirements and design documentation completed. 

Jun  
2002 

First integrated end-to-end demonstration, user 
interface tuning in response to GSK feedback, 
formal test plan and test suite documentation 
completed. 

Jul  
2002 

Completion of first formal testing cycle, WebVDME 
test release available to GSK for hands-on testing, 
identification of key areas for improvement (MGPS 
memory usage on large runs, ability to filter data 
mining results using higher-level terms and patterns, 
graph performance on large datasets) 

Aug  
2002 

Development and testing of improvements, re-
execution of test suite, migration to new server, 
demonstration and signoff on improvements 

Sep  
2002 

User manual completed, end-user and administrator 
training developed and provided, user acceptance 
testing performed and documented by GSK, formal 
release to production. 

We attribute the combined team’s ability to keep to this ambitious 
schedule to several factors: 
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• Ability to make substantial use of prior design and 
implementation experience by the team members in supporting 
pharmacovigilance use of data mining with predecessor tools, 
in developing and deploying several JSP-based applications 
and in creating, tuning, and validating our high-performance 
C++ implementation of MGPS. 

• Intense and enthusiastic participation by GSK staff throughout 
the development process, especially in the hands-on testing of 
interim releases and the production release of the software. 

• Conservative choice of operating environment (using a well-
established production environment: Oracle, TomCat, Internet 
Explorer, and solid development tools: JBuilder Enterprise, 
Visual SourceSafe).  Testing requirements were simplified by 
standardizing on a single SQL database supplier (Oracle) and a 
single browser environment (IE 5.5 and later). 

Important architectural choices in the design of the system were: 

• Strict use of server-centric development technologies (HTML, 
GIF, JSP pages) that facilitate widespread deployment without 
concern for the details of client computer configurations, 
network firewalls, corporate security policies, etc.   

• Maintenance of all important data resources (source databases, 
data mining results tables, configurations, etc.) in Oracle to 
provide for stable storage, security, and rapid results retrieval. 

• Integrated batch execution of data mining runs, with end-user 
capabilities for submitting and monitoring runs from within the 
system, so compute-intensive data mining runs can take place 
in the background without interfering with interactive use. 

A specific technique used by the project team to support rapid 
design, implementation, and evaluation while still generating the 
written design artifacts necessary for validation was to create and 
maintain a comprehensive set of context-specific “help” screens 
starting very early in the project. These “help” screens were used 
simultaneously as design documentation for the user interface, as 
the primary source for generation of specifications, test scripts 
and end-user documentation, and as a means of technical 
communication among the developers, testers, and GSK users. 

Software construction was performed by a small group of expert 
programmers, under the direction of Lincoln’s software architect 
and chief technical officer.  Code was constructed using standard 
development tools (JBuilder) within Lincoln’s JSP/Java 
architecture, following a common coding style.  All sources were 
maintained in SourceSafe (accessed through the web-based 
SourceOffSite front end) and were checked in frequently.  
Programmers performed coding and unit testing in a laptop 
computer environment that was capable of running the application 
and database.  Builds and installs on shared servers took place 
regularly (once or twice a week early in the cycle, daily later in 
the cycle).  Problems were entered in and tracked using the 
ProblemTracker software from the time that initial coding and 
unit testing were completed on a module.  Throughout the project, 
performance problems were the most important cause for rework 
of software modules, and a continued effort was necessary to 
achieve reasonably good performance on large-scale data mining 
problems – these were generally due to technical issues such as 
database loading or indexing, Java garbage collection, etc., rather 
than to the data mining algorithm itself. 

A major focus of the project was testing.  All developers were 
responsible for performing unit testing of software modules that 
they develop or modify.   Automated regression testing was used 
primarily to ensure that changes to the MGPS statistical algorithm 
did not have unintended effects on the computation of signal 
scores.  An extensive suite of manual test scripts was developed to 
support formal testing requirements.  While both the regression 
testing and the formal manual testing were effective in detecting 
situations where changes broke previously-working software, we 
found that aggressive testing of the system on large, realistic 
problems was still necessary to reach a high level of reliability. 

GSK staff made crucial contributions to the testing process 
through design and execution of formal user acceptance tests 
(based on application of WebVDME to realistic problems of 
interest).  GSK was also involved in informal early testing of new 
functionality, so that poor interface choices could be caught and 
corrected quickly.  User participation in testing was facilitated by 
the release of a first version of the software several months before 
the production version.  This release contained most of the 
functionality and permitted end-to-end experimentation while 
several of the more challenging features were being completed. 

Lincoln has ongoing maintenance responsibility for WebVDME, 
which has evolved from a custom application to a 
pharmacovigilance software product that can be installed at a user 
organization or provided as an external service.  Several other 
pharmaceutical companies have begun pilot testing of the 
application (including one that began testing during the latter 
stages of the implementation project described here), and the 
WebVDME software has been delivered to FDA and to CDC as 
well.  Recently, Lincoln entered into a formal Cooperative 
Research and Development Agreement (CRADA) with FDA, 
under which WebVDME is being enhanced to serve as an internal 
data mining resource for medical officers and safety evaluators 
associated with the monitoring of marketed drugs and vaccines.   

7. APPLICATIONS AT GSK 
At GSK, WebVDME data mining has been used to assist with 
safety screening as part of day-to-day pharmacovigilance and risk 
management practice, and to carry out special projects for 
hypothesis generation and refinement as an adjunct to formalized 
methods (clinical trials, pharmacoepidemiological studies).   

Project areas have included: 

• Comparisons of safety profiles of drugs within a drug class 

• Exploration of possible drug-drug interactions 

• Analysis of adverse events that could be attributed to one of 
several drugs in multi-drug therapy (“innocent bystander”/ 
“guilty bystander” problems) 

• Peri-approval risk management planning for new drug 
applications 

• Study of adverse events in special populations  

• Analysis of signal evolution over time to understand trends 

Example scenarios of use include: 

Effects in Special Populations:  As one input to deciding whether 
it was appropriate to conduct clinical trials in a special population 
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of a highly effective drug for a serious condition, a study can be 
conducted to examine whether there is evidence from data mining 
that a known adverse event might occur more frequently in that 
special population.  The AERS database can be essentially 
divided into two data sets based on membership in the special 
population, and signal scores and their 90% confidence interval 
values calculated for the drug-event pair in each group and 
compared.   

Analysis of Possible Drug Combination:  In the evaluation of a 
potential new therapy based on the combination of two marketed 
drugs (which had in some cases been co-prescribed by 
physicians), data mining can be used as one tool for ascertaining 
whether toxicity associated with the primary drug might be 
exacerbated by the presence of the secondary drug.  The 
analytical approach can be based on recoding cases in the 
database to distinguish between cases where only the primary 
drug is reported and cases where both primary and secondary 
drugs are reported.  

Analysis of Adverse Events in Polytherapy:  When several 
products are co-prescribed, safety signals may emerge where it is 
difficult to discern which products are properly associated with 
the event of interest.  Data mining can be used to conduct 
analyses of specific subgroups where each drug of interest is used 
in combination and also in the absence of others 
(“monotherapy”); this is illustrated for hypothetical data in Figure 
6 below.  While these analyses must be interpreted with extreme 
caution and are intended only as a first step towards hypothesis 
generation, comparison of signals seen in these groups may help 
to clarify associations and potentially help to direct the focus of 
future clinical studies.   

 
Figure 6.  Discriminating drug contributions in polytherapy 

8. CONCLUDING REMARKS 
We were fortunate in collecting key user input early in the design 
of this application, and many aspects of the development were 
accomplished more easily than anticipated.  Several areas were 
more difficult and yielded only to sustained and repeated effort, 
including data preparation and data cleaning, performance 
measurement and optimization, and testing on large problems.  
These would be good areas for improved tools or techniques. 

We believe that the development, deployment, and use of 
WebVDME demonstrates that sophisticated KDD tools can be 
“packaged” in a form where they can be used effectively by end-
users to explore complex problems in a mission-critical 
application.  These applications can be factored conveniently into 
functionality for staff with different roles (administrator, data 
mining specialist, data mining results reviewer).  Currently 
available mainstream web-site development technologies (web 
and application servers, relational databases) are capable of 
supporting the creation, within reasonable time and budget 
constraints, of server-based KDD applications that can be readily 
deployed and maintained.  Further, many of the components of 
the application (user administration, batch queue operation, output 
filtering, table and graph display) are relatively general purpose 
and will be reused by Lincoln in other data-centric applications. 

9. TECHNICAL SUMMARY OF MGPS 
For an arbitrary itemset, it is desired to estimate the expectation  λ 
= E[N/E], where N is the observed frequency of the itemset, and E 
is a baseline (null hypothesis) count; e.g., a count predicted from 
the assumption that items are independent. An itemset is defined 
by its members i, j, k,..., which occur as subscripts to N, E, and 
other variables, so that, for example, Nij is the number of reports 
involving both items i and j, Eijk is the baseline prediction for the 
number of reports including the itemset triple (i, j, k), etc.   

A common model for computing baseline counts is the 
assumption of within-stratum independence; when E is computed 
under this assumption we shall often denote it by E0. Assume that 
all reports are assigned to strata denoted by s = 1, 2, ..., S.  Let: 

Pi
s = proportion of reports in stratum s that contain item i 

ns = total number of reports in stratum s 

Baseline frequencies for pairs and triples are defined under 
independence as: 

 E0ij = Σs ns Pi
s Pj

s E0ijk = Σs ns Pi
s Pj

s Pk
s 

For itemsets of size 3 or more, an “all-2-factor” loglinear model 
can be defined as the frequencies E2 for the itemsets that match 
all the estimated pairwise two-way marginal frequencies but 
contain no higher-order dependencies. For triples, E2ijk agree with 
the estimates for the three pairs: 

λijE0ij    λikE0ik    λjkE0jk    

For 4-tuples, E2ijkl agrees with 6 such pairs, etc. 

Then for itemsets of size 3 or more we compare the estimated 
frequency to the all-2-factor prediction by simple subtraction.  For 
example, in case of triples: 

Excess2ijk =λijkE0ijk - E2 ijk 

The parameters λ above are estimated by their geometric means, 
denoted EBGM, of their empirical Bayes posterior distributions. 
For simplicity, the formulas below use just two subscripts, for 
itemsets of size 2, such as the occurrence of drug i and symptom j 
in a medical report. Estimates for other itemset sizes are 
computed analogously.  Let: 

Νij = the observed counts 
Eij = the expected (baseline) counts  
RRij = Nij /Eij = ratio of observed to baseline 
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We wish to estimate λij = µij /Eij, where Νij ~ Poisson(µij). 
Assume a superpopulation model for λij (prior distribution) based 
on a mixture of two gamma distributions (a convenient 5-
parameter family of distributions that can fit almost any empirical 
distribution): 

π(λ; α1, β1, α2, β2, P) = P g(λ; α1, β1) + (1 − P) g(λ; α2, β2) 
g(λ; α, β) = βα λα−1 e−βλ / Γ(α) 

Estimate the prior distribution from all the (Νij, Eij) pairs. 
Estimate the 5 hyperparameters:  

θ = (α1, β1, α2, β2, P) 

by maximizing the likelihood function L(θ) in 5 dimensions: 
L(θ) = Πi,j{P f(Nij ; α1, β1, Eij)  +  (1 – P) f(Nij ; α2, β2, Eij)} 
f(n; α, β, E)  =  (1 + β/E)−n(1 + E/β)−α Γ(α + n) / Γ(α) n! 

If a threshold (minimum count) for the observed counts is used, 
these formulas are modified to condition on Νij > n* (where n* = 
the threshold count). 

Given θ, the posterior distributions of each λij are also a mixture 
of gamma distributions used to create “shrinkage” estimates.  
Assuming that θ and E are known, then the distribution of N is: 

Prob(N = n)  =  P f(n; α1, β1, E) + (1 – P) f(n; α2, β2, E) 

Let Qn be the posterior probability that λ came from the first 
component of the mixture, given N = n.  From Bayes rule, the 
formula for Qn is: 
Qn = P f(n; α1, β1, E)/[P f(n; α1. β1,E)+(1 – P) f(n; α2, β2, E)] 

Then, the posterior distribution of λ, after observing N = n can be 
represented as: 

λ|Ν = n   ∼   π(λ; α1 + n, β1 + E, α2 + n, β2 + E, Qn) 

where (as above): 
π(λ; α1, β1, α2, β2, P)  =  P g(λ; α1, β1) + (1 − P) g(λ; α2, β2) 

We will use the expectation value: 
E[log(λij) | Nij, θ]  

as a means of estimating the “true” value of λij 
To obtain a quantity on the same scale as RR, we define the 
Empirical Bayes Geometric Mean: 

EBGMij = e
E[log(λij)| Nij, θ] 

,   where 
E[λ | N = n,θ] = Qn (α1+ n)/(β1+E) + (1–Qn) (α2+ n)/(β2+E) 
E[log(λ) | N = n,θ] =  Qn  [ψ(α1+ n) – log(β1+E)]  +  

 (1–Qn)  [ψ(α2+ n) – log(β2+E)] 

where  ψ(x) = d(log Γ(x))/dx.  In the same way, the cumulative 
gamma distribution function can be used to obtain percentiles of 
the posterior distribution of λ.  The 5th percentile of λ is denoted: 

EB05ij = Solution to:  Prob(λ < ΕΒ05 | Nij, θ) = 0.05 
and is interpreted as a lower 1-sided 95% confidence limit. 
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